自动控制原理(线性)

B站学习视频icon-default.png?t=N6B9https://space.bilibili.com/230105574/channel/seriesdetail?sid=1569593

一.开环、闭环 

简单来说,开环系统的输入和输出是无关的,闭环系统的输入是 关于输出的函数,即反馈

 二.系统稳定性——稳定、临界稳定和发散

一般书上写的就是研究系统本身的传递函数来分析稳定性(输入是冲激函数就可以得到)

而分析稳定性就是从极点入手,具体极点怎么对应输出的衰减和振荡

因此设计控制器来实现极点配置,使得系统极点都在左半平面,这就是经典控制的设计思路;而现代控制理论主要研究状态矩阵的特征值,这个特征值对应的就是传递函数的极点

三.案例建模——体重控制

比例控制器、进一步引入积分的比例积分控制器

补充:输出值和参考值存在差距,用终止定理(很重要,能在s域求极限得到时域的稳定值)求输出值之前要先判断系统的稳定性,然后再求输出值进而得到稳态误差

而通过下图上半部分的结果可知,问题误差表示为e_{ss}=r-\frac{k_{p}}{1+k_{p}}r=\frac{1}{1+k_{p}}r,r是时域的参考值,显然只有当k_{p}\rightarrow \inftye_{ss}才会趋向0,而k_{p}是不可能设置成无穷大的,这就表明了稳态误差在仅使用比例控制器时是不可能消除的,即系统特性造成稳态误差

个人理解重点是令\lim_{s\rightarrow \infty }C(s)=0,只不过最简单的C(s)就是\frac{1}{s},而这个\frac{1}{s}就是对应积分,所以才引进积分,当然更复杂的C(s)也是可以的,而上面写到在\frac{1}{s}基础上加个系数k_{I},代表积分增益,就像比例增益一样,我理解的比例增益原本的单位就是1,而k_{p}就是系数(不同的系数对应不同的比例调节),这里的积分原本的单位就是\frac{1}{s}k_{I}就是系数,不同的系数就对应不同的积分调节(当然也可以直接改基本单位)

而引入\frac{1}{s}就将一阶系统变成二阶系统,就会多很多特性;

四.根轨迹

二阶系统还是举例之前的弹簧系统

ax^{2}+bx+c=0\Rightarrow x=\frac{-b\pm \sqrt{(b^{2}-4ac)}}{2a}

研究对象和分析对象是不同的,前者是将闭环系统整理成"开环系统"(这只是一个等效形式,不要太纠结是不是真正的开环传递函数)的极点,而后者是开环系统的分母化为标准形式后的k对应的项的零极点分析(这里感觉表述不太对,可以对比一下 后期补充 的第4点)

在参数根轨迹的求解过程中,等效的开环传递函数的零点与原系统是无关的,can的解法就是传统的参数根轨迹解法,是不要求回推一致的。如果要讨论闭环零点对系统性能的影响,需要求出原闭环系统的零点。

注意这里的\frac{1}{s^{3}+3s^{2}+ks+1}这个例子提到的反馈函数是1,所以看上去就是只分析了G(s)和k

 注意汇合点不是上面那个计算的渐近线的交点,这里就不要求计算了,MATLAB可以直接画,这里学习的目的是理解根轨迹变化的趋势

五.根轨迹设计法 

注:传递函数\frac{1}{s^{2}+2kw_{ns}+w_{n}^{2}}和其一般式是不同的,而特征方程和根轨迹是相同的,即分析是一样的

复制评论区的部分内容(参考): 

1.补充一下为什么分离点在\frac{dk}{d\sigma },因为在到达分离点,根轨迹都在实轴,并且在离开分离点后,K在增大(一条指向左边,一条指向右边)。把K-\sigma图画出来,大概长这样: \/,V的小尖尖就是分离点,也是极值点,所以\frac{dk}{d\sigma } = 0

2.根轨迹本质上是通过研究闭环传函的特征方程,研究系统的特性,通常情况下,我们可以把系统拆分成K ,G(s)的前向通道,有一条增益为1的负反馈通道,这样呢,我们的特征方程就变成了1+K*G(s)=0,负反馈上有D(s)也不要紧,形式就变成了,1+K*G(s)*D(s)=0,本质一样,可以看看梅森增益公式。我们研究K由0增加到正无穷,特征根的轨迹特性,实际上,极点在复平面坐左半平面是稳定的,如果到了右平面,那系统的输出就会发散。

根轨迹的规则如何来的呢?本质上是通过幅角特性,我们把特征方程稍微改变一下,K*G(s)=-1,这样左边的幅值应该是1,相角的和永远是180度。我们当然希望极点越往左越好,收敛的时间就会变短,虚轴决定的是震荡的频率,通过K的取值,在某种意义上,我们就完成了系统的极点配置,系统的性能会得到提升。

根轨迹的几何性质及利用

首先还是认识复数的性质:

z_{1}=\sigma 1+jw_{1}=r_{1}e^{i\theta _{1}}, z_{2}=\sigma 2+jw_{2}=r_{2}e^{i\theta _{2}}

z_{1}z_{2}=r_{1}r_{2}e^{i(\theta _{1}+\theta_{2})}

对于N(s)=s+3,s=2+2j,直接代进去就是5+2j,但其实可以换一个思路——令N(s)=0求出零点,然后在图上直接标出2+2j,从零点直接连2+2j得到的向量长度模长和角度和计算得到的5+2j是一样的,只不是是起始点不同,那么对于\frac{N(s)}{D(s)}而言,

最终结果的模长为\frac{\Pi\, \, \, all \, \, \, zero\, \, \, length}{\Pi\, \, \, all \, \, \, pole\, \, \, length},相角为\Sigma \, \, zero \, \, Angle-\Sigma \, \, pole \, \, Angle

为什么要学习上面这些呢?还记得以前的那个1+kG(s)=0的形式吗?

如果将式子表示成kG(s)=-1,就意味着左边的模值恒为1,相角为-\pi,则

|kG(s)|=1=k\frac{\Pi\, \, \, all \, \, \, zero\, \, \, length}{\Pi\, \, \, all \, \, \, pole\, \, \, length}

\angle kG(s)=-\pi (2q+1),q=0,\pm 1,...

这样就可以用上面的条件来判断一个根是否在根轨迹上

判断的方式就是将一个位置的根与现有的零极点进行连线,就可以得到多个向量,往上面的条件套就行了,在根轨迹上就是满足条件的

而调整根轨迹的方法也是这个角度,先找到一个位置的根,然后也是个现有的零极点进行连线得到向量,根据那个相角条件如果直接配置单个零点这种就是,对应到系统传递函数上就是添加了一个微分的拉氏变换,所以才叫PD控制,而PD控制的微分项对高频分量极其敏感,所以就可以考虑同时用一个更靠近0的零点(与根相连的向量的相角更大)和极点来共同配置,这就是超前补偿器

实际上需要尽量避免PD(比例微分)控制,一方面是微分器没有纯无源的(使用必然引入额外的能量消耗,到分析能量效率的时候就更复杂了),另一方面是微分器对高频分量很敏感(可以这么说,积分是缩小高频信号分量已达到滤除高频分量,而微分就是放大高频信号分量) 

超前补偿器就是用一对零极点来调整,注意极点的角度要更小(即比零点更远离虚轴)

 具体就是将s+8换成\frac{s+z}{s+p},|z|<|p|就是滞后补偿,|z|>|p|就是超前补偿,这里就是超前补偿

目标减小稳态误差:当p\rightarrow0时e_{ss}=\frac{D(0)}{D(0)+kN(0)\frac{z}{p}}\rightarrow 0,此时补偿器就由\frac{s+z}{s+p}\Rightarrow \frac{s+z}{s}=1+\frac{z}{s},前一项就是比例项,后一项就是积分项,通过前面可知比例积分控制是可以减小稳态误差的

目标设计补偿器使e_{ss}=0.1

六.奈奎斯特稳定性判断

首先看一个闭环的控制系统:

 例如要控制的系统是\frac{1}{s^{2}+0.4s+1},用一个补偿器k\frac{s+0.1}{s+0.01}和一个传感器\frac{1}{s+5}来组成

 令G(s)=\frac{N_{G}}{D_{G}},H(s)=\frac{N_{H}}{D_{H}},则G(s)H(s)=\frac{N_{G}N_{H}}{D_{G}D_{H}}\frac{G(s)}{1+G(s)H(s)}=\frac{N_{G}D_{H}}{D_{G}D_{H}+N_{G}N_{H}}1+G(s)H(s)=1+\frac{N_{G}N_{H}}{D_{G}D_{H}}=\frac{D_{G}D_{H}+N_{G}N_{H}}{D_{G}D_{H}},而1+G(s)H(s)则是连接上面两个传递函数的中间函数,中间函数的极点就是开环传递函数的极点,中间函数的零点就是闭环传递函数的极点,这个等价很重要,用于下面的推导替换

其次是柯西幅角原理

多个点就能形成一条线,在S平面内顺时针画出一条闭合曲线A,B曲线是A通过映射F(s)后在F(s)平面上的映射曲线

A曲线每包含一个F(s)的零点,B曲线就顺时针绕(0,0)一圈;A曲线每包含一个F(s)的极点,B曲线就逆时针绕(0,0)一圈;

最后推导奈奎斯特稳定性判据

在s域假设有一根直线,然后顺时针扫180度,理论上是扫出一个半圆,实际上是直线无穷大就扫过整个右半平面,这里就看成无穷半径的半圆,加上虚轴就构成一个封闭的曲线,封闭曲线会包括F(s)部分零极点(实际就是右半平面的零极点),用 右半平面的极点数-右半平面的零点数=绕求逆时针圈数,而映射F(s)就选择1+G(s)H(s)

这里就用到上面最开始的结论,就是直接替换,即得到这个新结论——  开环传递函数G(s)H(s)在s域右半平面的极点数-闭环传递函数\frac{G(s)}{1+G(s)H(s)}在s域右半平面的极点数 = 绕(0,0)的逆时针圈数

此时将F(s)两边减1,又因为变化后的G(s)H(s)是线性的,新结论左边里面的极点数计算其实没有变化,而新结论右边有变换,变成绕(-1,0)的逆时针圈数【即图像本身左移了一个单位】,这个左移后的线就是奈奎斯特图

开环传递函数G(s)H(s)在s域右半平面的极点数 - 闭环传递函数\frac{G(s)}{1+G(s)H(s)}在s域右半平面的极点数 = 奈奎斯特图绕(-1,0)的逆时针圈数

再根据系统稳定的条件是其闭环传递函数\frac{G(s)}{1+G(s)H(s)}在s域右半平面没有极点,即有最终的奈奎斯特稳定性判据——

开环传递函数G(s)H(s)在s域右半平面的极点数  = 奈奎斯特图绕(-1,0)的逆时针圈数(奈奎斯特图可用MATLAB画,至于圈数怎么数的再查查,我也不太懂,这个系列视频入门的自控)

 回到这一节一开始的例子,先算开环传递函数的极点

用MATLAB画出k=1时的开环传递函数的奈奎斯特图,显然(-1,0)点都不在图里面 ,那就绕0圈,对应判据右边就是0,那系统就是稳定的

 当k=6时,画出奈奎斯特图如下(红线),是顺时针绕了两圈,对应判据就是-2,0\neq-2,那系统就是不稳定

后期补充:

1.用偏差控制系统,比例器控制大方向,积分器解决比例器不能解决的稳态误差,微分器让系统更快收敛(如果存在白噪声,对输入要求就很高),三者结合就是PID控制;这里还说到补偿器,超前和滞后是零极点大小来区别的,和积分器、微分器这种地位是一样的

2.经典控制:为了让根可以通过调整参数后落在需求区域内,需要先通过设置不同的补偿器来调整根轨迹,使得根轨迹的部分区域能和预期需求的区域重叠,然后再调整开环增益K值,使得根移动到预期需求区域中,从而在整体上系统快速收敛达到稳定;

这里还有一个注意的,就是尽量把补偿器的零极点都往虚轴方向靠;

当用根轨迹法分析系统时,分析对象是开环传递函数,控制器往往是通过增加一个合适的零点或极点或者同时增加两者来实现的,也就是说增加的零点和极点都是针对开环传递函数来说的。

3.奈奎斯特判据用来判断系统的稳定性,注意求的极点和画的奈奎斯特图都是开环传递函数的

4.伯德图画的是开环传递函数的图,根轨迹画的是闭环传递函数的根的轨迹图

5.什么是最小相位环节?什么是非最小相位环节?(评论区复制的,参考一下,不一定对)

 

6.为什么说增加零点使相位超前而增加极点使相位滞后?

 当增加了一个零点的时候,相当于引入了一个微分项, 而微分项有超前特性

7.开环增益K有什么作用? 
根轨迹和伯德图分别在时域和频域上包含了系统的全部结构信息,因此改善动态/静态性能等于“操纵”根轨迹和波特图

当系统结构确定的时候,K值的能力范围就确定:

(1)体现在根轨迹上,K值只能让根落在属于根轨迹的位置

(2)体现在波特图上,K值对相频特性没有影响,对幅频特性只能影响它的上下位置,而不能改变它的“形状”。低频段的高度是由开环比例系数K形成的,K越大,整个曲线平移上去的高度就越高,而K越大,系统稳态误差就越小(但是它不能消除稳态误差)。

8.如何判断一个控制器是超前补偿还是滞后补偿?

(1)MATLAB直接画伯德图,伯德图中相频特性是正的,也就是说输出的相位比输入相位要超前;伯德图中相频特性是负的,也就是说输出的相位比输入相位要滞后。

(2)看零极点,

零点越大——这个时候微分环节输出越大,比例环节输出越小,超前效果越强,即超前角越大;

极点越大——滞后效果越强,即滞后角越大;

综合起来就是看零极点最大那个,由最大的主导

9.评论区复制的,参考一下,不一定对

滞后补偿是:针对的是幅频曲线,而相频曲线不变,采取措施减小3dB频率,使单位增益带宽向后移动(即向原点移动),从而达到增加相位裕度;
超前补偿是:针对的是相频曲线,采取相关措施,把180度频率向前移动(即向正半轴移动),而幅频曲线不变,从而达到增加相位裕度的目标。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夜以冀北

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值