lapack、blas、solver库的区别和联系

LAPACKBLASSolver 库 是数值计算领域的重要组成部分,它们各自的功能和设计目标有所不同,但也存在密切的联系。


1. 概述

主要功能 设计目标
BLAS 提供基础的线性代数操作,如向量运算、矩阵-向量乘法、矩阵-矩阵乘法等。 提供高度优化的基础线性代数操作,作为更高级库的底层依赖。
LAPACK 提供更高级的线性代数功能,如矩阵分解(LU、QR、SVD)、特征值问题和解线性方程组。 在 BLAS 的基础上实现高级算法,主要用于科学计算中的常见线性代数问题。
Solver 库 提供专门用于解代数方程(线性/非线性方程组)、优化问题或特定领域问题的功能。 聚焦于数值求解,可能在内部调用 LAPACK 或其他优化算法,但通常面向特定问题。

2. 详细解析

(1) BLAS (Basic Linear Algebra Subprograms)
    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值