求解微分方程特解的一万种方法
在做微分方程的题目的时候,我遇到了一些刁钻的题目,它要我求解该方程,那么按照解题思路呢,对于二阶线性微分方程,我们会得到两个特征根,它分为三种情况嘛,然后我们可以选择通解的形式,然后再进行后续操作
其实我在学习的时候是搞不懂这些东西的啊,微分方程不能直接求解吗?为什么要背公式?特征根有什么特征?常系数是什么系数?线性是怎么个线性?齐次有多齐?等等一系列问题,为了整理这样的问题呢,我就写了这篇文章。
微分方程
阶
微分方程中最高阶导数的阶数为方程阶数
解
就是y=f(x)是啥样
通解
特解
解的一部分,不包含任意常数的解
前缀系列
可分离变量
齐次
一阶线性
一阶线性的通解
问就是直接背,反正二阶还有,背个简单的好去背难的
二阶线性
齐次
常系数(就是系数变成常数咯)
非齐次
常系数
二阶常系数齐次线性的通解
特征根为实数
相等
不相等
特征根为共轭复数α±iβ
常系数非齐次线性的特解(重点)
本次的重中之重,下边来分析这个名字
- 常系数指P和Q为常数,不含有未知数x
- 非齐次指等号右边有f(x)
- 线性指y``+py`+qy这个样子
那么它的一般形式为
这玩意显然上边已经出现过了,请按目录翻一翻
那么就得按照f(x)的形式来分类,这就是我们经常遇到的问题了,怎么去考虑它的形式
2021年0830更新,使用这个套特解形式的方法只能适用于当等式右边的 e A x e^{Ax} eAx中A为特征值时才能套,如果不是特征值的话,那就不用这样去套,个人认为可以直接把k置零,详见更新的例题
举个例吧:
可以解出两个特征根相等,都等于3,刚好和f(x)里的α相等(一般都会相等吧大概),那么上述的k=2,然后P(x)=1,则Q(x)=C,只能次数相等,然后我们已经得到了特解,即:
把这个带入原本的微分方程里去,可以求解出C(C=0.5)
例2:
特征根为1和2,两个特征根为实数且不相等,则Q(x)=C,特征根不重复,则k=1,故有特征根的第一部分:
特征根的第二部分勒,就写成:
这题里边只问特解所具有的形式,而非具体的答案,因此上述abc都可以换为其他代表常数的字母
更新例题3
y
(
2
)
−
4
y
(
1
)
+
3
y
=
2
e
2
x
y^{(2)}-4y^{(1)}+3y=2e^{2x}
y(2)−4y(1)+3y=2e2x
解:首先考虑对应齐次方程的特征方程:
λ
2
−
4
λ
+
3
=
0
\lambda^2-4\lambda+3=0
λ2−4λ+3=0并由此得出齐次方程对应的通解
y
‾
\overline{y}
y
(本版块重点在于特解的形式而不是通解,故略过)
然后设非齐次方程的特解为
y
∗
=
A
e
2
x
y^*=Ae^{2x}
y∗=Ae2x,代入原方程得A=-2
由此得出非齐次方程的通解
- 错误套壳:
由特征方程的重复根数为1,即k=1,考虑 y ∗ = A x e 2 x y^*=Axe^{2x} y∗=Axe2x - 结果:
带入原方程后, B ( A ) x e 2 x B(A)xe^{2x} B(A)xe2x无法消除,同时A ≠ 0 \ne0 =0,则会让人觉得很懵逼,并且浪费解题时间,正常情况下这项会消除,并且只留下 B ( A ) e 2 x B(A)e^{2x} B(A)e2x然后顺利解出A的值
这一种看起来就很恶心的类型,但能解决的问题就直接解决比较好,难的是不能解决的问题
例题1(非常的抽象):
特征根为±ik(或±jk),通解形式已决定,考虑特解形式,最复杂的情况就是
这样的完全体!(我看着压力就大)
跟原式对比一下
完全抄下来的部分有三角函数部分
所以上述cos x直接抄下来,没有包含exp(x),放松放松(压压惊
那么我们可以把公式简化为
Cos x前没有P(x)故R(x)=常数(再把这个式子简化一下吧,我压力好大)
决定k的是复数中ik是不是齐次微分方程的单个特征根,什么是齐次微分方程?看下边
怎么看是不是单个特征根呢?
假设它不是,那么k=0,则
直接代入原微分方程去验证,可以解得B=0,A=-1
假设它是,则k=1,则
带入原微分方程去,则A=0,B=0.5
例题2(好多了):
特征根为1±2i,为复数,则k=1,三角函数前有exp(x),原封不动搬下去,三角函数也原封不动地搬下去,三角函数前没有x的次方项,因此需要带入两个系数到正弦和余弦,即
带入原微分方程求解A和B,解得A=0,B=0.25,翻到参考答案,结果正确,完美!
总结
从不敢看这个结论到看得清清楚楚,我觉得今天我有很大的进步,给自己点个赞嗷,考研加油