特解的一万种考虑方法

本文详细介绍了求解微分方程的各类方法,包括通解和特解的计算,重点讨论了二阶线性常系数微分方程。通过实例解析了特征根为实数相等、不相等及共轭复数时的解法,并强调了非齐次方程特解的确定。文章适合于学习微分方程的初学者,帮助理解解题步骤和公式背后的逻辑。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


在做微分方程的题目的时候,我遇到了一些刁钻的题目,它要我求解该方程,那么按照解题思路呢,对于二阶线性微分方程,我们会得到两个特征根,它分为三种情况嘛,然后我们可以选择通解的形式,然后再进行后续操作
其实我在学习的时候是搞不懂这些东西的啊,微分方程不能直接求解吗?为什么要背公式?特征根有什么特征?常系数是什么系数?线性是怎么个线性?齐次有多齐?等等一系列问题,为了整理这样的问题呢,我就写了这篇文章。

微分方程

在这里插入图片描述

微分方程中最高阶导数的阶数为方程阶数

就是y=f(x)是啥样

通解

在这里插入图片描述

特解

解的一部分,不包含任意常数的解

前缀系列

可分离变量

在这里插入图片描述

齐次

在这里插入图片描述

一阶线性

在这里插入图片描述

一阶线性的通解

在这里插入图片描述
问就是直接背,反正二阶还有,背个简单的好去背难的

二阶线性

齐次

在这里插入图片描述

常系数(就是系数变成常数咯)

在这里插入图片描述

非齐次

在这里插入图片描述

常系数

在这里插入图片描述

二阶常系数齐次线性的通解

在这里插入图片描述

特征根为实数

相等

在这里插入图片描述

不相等

在这里插入图片描述

特征根为共轭复数α±iβ

在这里插入图片描述

常系数非齐次线性的特解(重点)

本次的重中之重,下边来分析这个名字

  1. 常系数指P和Q为常数,不含有未知数x
  2. 非齐次指等号右边有f(x)
  3. 线性指y``+py`+qy这个样子

那么它的一般形式为
在这里插入图片描述
这玩意显然上边已经出现过了,请按目录翻一翻
那么就得按照f(x)的形式来分类,这就是我们经常遇到的问题了,怎么去考虑它的形式
在这里插入图片描述


2021年0830更新,使用这个套特解形式的方法只能适用于当等式右边的 e A x e^{Ax} eAx中A为特征值时才能套,如果不是特征值的话,那就不用这样去套,个人认为可以直接把k置零,详见更新的例题


举个例吧:

在这里插入图片描述
可以解出两个特征根相等,都等于3,刚好和f(x)里的α相等(一般都会相等吧大概),那么上述的k=2,然后P(x)=1,则Q(x)=C,只能次数相等,然后我们已经得到了特解,即:
在这里插入图片描述
把这个带入原本的微分方程里去,可以求解出C(C=0.5)

例2:

在这里插入图片描述
特征根为1和2,两个特征根为实数且不相等,则Q(x)=C,特征根不重复,则k=1,故有特征根的第一部分:
在这里插入图片描述
特征根的第二部分勒,就写成:
在这里插入图片描述
这题里边只问特解所具有的形式,而非具体的答案,因此上述abc都可以换为其他代表常数的字母

更新例题3

y ( 2 ) − 4 y ( 1 ) + 3 y = 2 e 2 x y^{(2)}-4y^{(1)}+3y=2e^{2x} y(2)4y(1)+3y=2e2x
解:首先考虑对应齐次方程的特征方程:
λ 2 − 4 λ + 3 = 0 \lambda^2-4\lambda+3=0 λ24λ+3=0并由此得出齐次方程对应的通解 y ‾ \overline{y} y
(本版块重点在于特解的形式而不是通解,故略过)
然后设非齐次方程的特解为 y ∗ = A e 2 x y^*=Ae^{2x} y=Ae2x,代入原方程得A=-2
由此得出非齐次方程的通解

  • 错误套壳:
    由特征方程的重复根数为1,即k=1,考虑 y ∗ = A x e 2 x y^*=Axe^{2x} y=Axe2x
  • 结果:
    带入原方程后, B ( A ) x e 2 x B(A)xe^{2x} B(A)xe2x无法消除,同时A ≠ 0 \ne0 =0,则会让人觉得很懵逼,并且浪费解题时间,正常情况下这项会消除,并且只留下 B ( A ) e 2 x B(A)e^{2x} B(A)e2x然后顺利解出A的值

在这里插入图片描述
这一种看起来就很恶心的类型,但能解决的问题就直接解决比较好,难的是不能解决的问题

例题1(非常的抽象):

在这里插入图片描述
特征根为±ik(或±jk),通解形式已决定,考虑特解形式,最复杂的情况就是
在这里插入图片描述
这样的完全体!(我看着压力就大)
跟原式对比一下
在这里插入图片描述
完全抄下来的部分有三角函数部分
所以上述cos x直接抄下来,没有包含exp(x),放松放松(压压惊
那么我们可以把公式简化为
在这里插入图片描述
Cos x前没有P(x)故R(x)=常数(再把这个式子简化一下吧,我压力好大)
在这里插入图片描述
决定k的是复数中ik是不是齐次微分方程的单个特征根,什么是齐次微分方程?看下边
在这里插入图片描述
怎么看是不是单个特征根呢?
假设它不是,那么k=0,则
在这里插入图片描述
直接代入原微分方程去验证,可以解得B=0,A=-1
假设它是,则k=1,则
在这里插入图片描述
带入原微分方程去,则A=0,B=0.5

例题2(好多了):

在这里插入图片描述
特征根为1±2i,为复数,则k=1,三角函数前有exp(x),原封不动搬下去,三角函数也原封不动地搬下去,三角函数前没有x的次方项,因此需要带入两个系数到正弦和余弦,即
在这里插入图片描述
带入原微分方程求解A和B,解得A=0,B=0.25,翻到参考答案,结果正确,完美!

总结

从不敢看这个结论到看得清清楚楚,我觉得今天我有很大的进步,给自己点个赞嗷,考研加油

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值