单纯形法——线性规划的经典算法
极点定理:
可行区域非空的任意线性规划问题有最优解,而且,最优解总是能够在其可行区域的一个极点上找到
这个定理告诉我们,在解一个线性规划问题时,起码在可行区域有界的情况下,我们只需考虑有限数量的点,而可以忽略其他所有点。
大体来说,我们可以这样求解问题:在每个极点上计算目标函数的值,然后选出具有最佳值的那个点。但要实现这个方法还有两个主要障碍:
①需要一种方法来生成可行区域的所有极点
②随着问题规模的增长,极点的数量是呈指数级增长的。对于大多数具有一定应用价值的线性规划来说,对极点采用穷举法来计算就不现实了。
幸运的是,有一种算法在一般情况下只需要检测可行区域极点中的一小部分就能中找到最优点。这个著名的算法被称为单纯形法
1.单纯形法概述
这个算法的思想可以用几何术语描述如下:
先在可行区域中找到一个极点,然后检查一下是不是在邻接极点处可以让目标函数取值更加。如果不是,则当前顶点就是最优点,然后算法停止;如果是,转而处理那个能让目标函数取值更佳的邻接顶点。有限步以后,该算法要么发现了一个取得最优解的极点,要么证明了最优解不存在。
我们现在的目标是要把单纯形法的几何描述“翻译”成更具算法精确性的代数语言,在将单纯形法应用于线性规划问题之前,先要将其转化为一种称为标准形式的特定形式。标准形式要满足下列要求:
- 它必须是一个最大化问题
- 所有的约束都必须用线性方程的形式表示
- 所以的变量都必须要求是非负的
因此,具有m个约束和n个变量的标准形式的通用线性规划问题是:

本文深入探讨了线性规划问题的解决方法,重点介绍了单纯形法这一经典算法。通过对极点定理的理解,文章阐述了如何在有限数量的极点中寻找最优解,详细解释了将线性规划问题转化为标准形式的过程,以及如何利用单纯形表表示基本可行解,最终通过迭代找到最优解。
最低0.47元/天 解锁文章
1565

被折叠的 条评论
为什么被折叠?



