【matlab下的双目内窥镜标定与深度测距-双目标定内容】

【matlab下的双目内窥镜标定与深度测距-双目标定内容】

在本片中主要讲述如何通过matlab标定双目内窥镜,以及标定结果参数的含义,和使用方法

一般来说标定相机由opencv标定和matlab 标定两种方法,但是opencv由于是全部自主化进行,没有办法调整标定中的图像样本,因此普遍来说,标定精度会弱于matlab。建议在标定时使用matlab标定。

标定过程

与标定普通内窥镜的流程相同
选择matlab工具箱中的双目标定工具箱
在这里插入图片描述
添加图像
在这里插入图片描述
选择左右目相机图像,名称一一对应,选择棋盘格间距
在这里插入图片描述
标定选项
在这里插入图片描述
角点提取效果

在这里插入图片描述
根据重投影误差,删减误差过大的样本,平均误差越小越好
在这里插入图片描述
极线对齐结果
在这里插入图片描述

然后export将参数保存到工作区域,在工作区域另存为mat数据
完成标定

参数分析

需要注意的是,在标定的结果中,不会出现双目测距中需要的参数,如果想获得

参数结果
在这里插入图片描述
其中左右相机的参数数据如下
在这里插入图片描述

RadialDistortion:径向畸变,摄像头由于光学透镜的特性使得成像存在着径向畸变,可由K1,K2,K3表示。

TangentialDistortion:切向畸变,由于装配方面的误差,传感器与光学镜头之间并非完全平行,因此成像存在切向畸变,可由两个参数P1,P2表示。
在使用时,需要注意参数的排放顺序,即(K1,K2,P1,P2,K3)

IntrinsicMatrix:存放的是摄像头的内参,只与摄 像机的内部结构有关,需要先转置再使用。通常表示为f,0,cx;0,fy,cy;0,0,1。其中,f和fy是焦距,cr和cy是图像中心的像素坐标。内参矩阵描述了摄像头的几何特性和成像方式,对于图像校正和三维重建等任务非常重要

FundamentalMatrix 和EssentialMatrix分别是基础矩阵和本质矩阵

极线矫正参数

[re_imgleft, re_imgright,Q,Pl,Pr,Rl,Rr] = rectifyStereoImages(leftimg,rightimg,stereoParams.stereoParams,'OutputView', 'valid');

得到极线对齐相关参数

Q:视差矩阵,用于后续的三维重建
Pl:左侧相机的投影矩阵
Pr:右侧相机的投影矩阵
Rl:左侧相机的旋转矩阵
Rr:右侧相机的旋转矩阵

都看到这了,点个赞再走吧彦祖

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

狗头狗不狗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值