误差分析与模型检验

误差分析与模型检验

关键词:误差,稳定性,检验,敏感性
在数学建模中,除了建模和求解这些主要的内容之外还有一些必须要注意的细节内容,其中重要的两部分
一是在建模前数据的预处理,在数据处理题中会占有5分的分值,是极其中要且关键的
二是在模型建立之后对于已经建立的模型的分析与检验,也是在比赛中十分关键的要素。通常也占有5分的分值直接决定了论文的等级和比赛的名次。而对于很多建模选手而言,模型的分析与检验是一个非常模糊的概念,也不知道关于模型分析检验的流程和具体做法,在此本文列出几种重要的模型分析和检验的方法以供参考。

误差分析

1.理论分析
理论分析的原理其实来自于高等数学中的一个概念:

在这里插入图片描述
显然这个式子具有普遍性,则也存在:
在这里插入图片描述
而对于误差分析为了保证可比性,通常进行变形处理在加上绝对值,使其变为相对误差

在这里插入图片描述
即可得到一元函数的相对误差分析结果
而对于二元函数主要利用全微分理论知识

在这里插入图片描述
同时对于得到的结果而言因变量的系数越大,就越能够认为该因子是模型的中重要影响因子,即敏感因子。

2.扰动分析
对重要的参数进行扰动(人为干扰),观察计算结果的变化
例如直接让重要参数增加或减少1%,计算得到结果的变化
可利用matlab中的normrnd生成均值0.01,方差0.01/0.02/0.05随机数,加到重要参数上,计算原模型的改变率是多少。如果变化幅度特别大,则可以自然的想到是不是该模型有问题,并不稳定,因而引出模型分析。

稳定性分析

1.微分方程、差分方程稳定性理论分析
方程解的稳定(可控范围之内即为稳定)
解对微分方程系数的依赖程度

在这里插入图片描述

在这里插入图片描述

![在这里插入图片描述](https://img-blog.csdnimg.cn/20190822112630742.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNjQ5Nzg2,size_16,color_FFFFFF,t_

在这里插入图片描述
在这里插入图片描述

2.扰动分析(系数的扰动对解的影响)

模型检验

1.实际试验检验
即可以在理论之外直接动手进行操作,例如在研究太阳影长变化的时候可以直接找定某一位置,观察并记录影长的变化程度,通过将数据代入原模型进行求解。将求解结果对在实际试验所得到的结果进行对比分析。确定模型的准确性。
2.扰动分析

敏感性分析

1.线性规划问题的lingo求解:直接给出
2.扰动分析
通过前文所说的,将模型中的参数以控制变量法进行调试,通过保持其他变量不变而对某一单独变量进行范围扰动,观察结果的变化程度,变换程度极大的则可以认为该变量所对应的影响因子敏感性较大,对于模型具有重要的影响关系,最后通过对比常识或相关研究资料验证是否合理

©️2020 CSDN 皮肤主题: 大白 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值