数学建模(3.9)多目标规划
理解
多目标规划跟一般的规划问题有所不同,多目标规划通常是要求学生做出满足各个优先度要求的最佳抉择。衡量出尽量满足所有需求而得出使得目标最优(如收益最大)的方案。
由于多目标规划跟线性规划完全不同,因此在此需要使用全新的解法。
正负偏差
为了将约束条件转换为等式,使得转换变成对偏差量的求解。在此引入d1,d1_,分别代表正负偏差变量。
d1=max{ fn-dn , 0 }表示决策值超过目标值的部分
d1_=-min{ f-dn , 0 }表示决策值未达到目标值的部分
前面的分段函数,是为了保证正负偏差变量不会出现负数情况
显然决策值只会要么多余目标值要么少于目标值,即b1,b1_中必定有一个为0
刚性约束和柔性约束
顾名思义,一定要满足的约束条件为刚性约束,尽量满足的约束条件为柔性约束条件。
其中刚性约束条件也可以不使用正负偏差变量代替。
优先等级
在随后的求解过程中,会出现达成目标的轻重缓急。在前的达成优先度会高于后者。
目标函数
(1)
要求尽可能接近(恰好达到目标值)
即要求正负偏差变量都尽可能的小
表示为使负偏差变量与系数乘积+正偏差变量与系数乘积最小
(2)
要求不能超过目标值(例如不能超过预算),即允许达不到目标值,使得正偏差变量尽可能的小
表示为正偏差变量与系数乘积最小
(3)
要求能超过目标值,即超过量不限,但是负偏差尽可能要小
表示为负偏差变量与系数乘积最小
实例
- 某单位领导在考虑本单位职工的升级调资方案时,要求相关部门遵守以下的规定:
(1)年工资总额不超过1500000元;
(2)每级的人数不超过定编规定的人数;
(3)II、III级的升级面尽可能达到现有人数的20%;
(4)III级不足编制的人数可录用新职工,又I级的职工中有10%的人要退休. 相关资料汇总于表2-1中,试为单位领导拟定一个满足要求的调资方案.
求解思路
为了考虑选取最优的调资方案,需要考虑三个约束条件,显然前两个约束条件为刚性约束,而第三个约束条件为柔性约束。
分别建立目标约束
设由II晋升为I的人数为x1,由III晋升为II的人数为x2,招聘为III的人数为x3,dn_为未满误差,dn为过盈误差,n=1.2.3.4.5
年工资总额不超标
(1)
为保证调资后的年工资预算仍在指标范围内,有约束条件
(2)
每一级的人数不超过定编规定的人数
(3)
II,III的升级面尽量达到现有人数的20%
最终得到目标规划的数学模型
通过lingo软件求解得第一级偏差和第二级偏差都为0,代入求得第三极偏差为-1
代入原模型解得
X1=2
X2=4
X3=6
lingo求解程序请见传送门:
https://blog.csdn.net/qq_43649786/article/details/98359558