数学建模(3.9)多目标规划

数学建模(3.9)多目标规划

理解

多目标规划跟一般的规划问题有所不同,多目标规划通常是要求学生做出满足各个优先度要求的最佳抉择。衡量出尽量满足所有需求而得出使得目标最优(如收益最大)的方案。

由于多目标规划跟线性规划完全不同,因此在此需要使用全新的解法。

正负偏差

为了将约束条件转换为等式,使得转换变成对偏差量的求解。在此引入d1,d1_,分别代表正负偏差变量。

d1=max{ fn-dn , 0 }表示决策值超过目标值的部分
d1_=-min{ f-dn , 0 }表示决策值未达到目标值的部分

前面的分段函数,是为了保证正负偏差变量不会出现负数情况

显然决策值只会要么多余目标值要么少于目标值,即b1,b1_中必定有一个为0

刚性约束和柔性约束

顾名思义,一定要满足的约束条件为刚性约束,尽量满足的约束条件为柔性约束条件。
其中刚性约束条件也可以不使用正负偏差变量代替。

优先等级

在随后的求解过程中,会出现达成目标的轻重缓急。在前的达成优先度会高于后者。

目标函数

(1)

要求尽可能接近(恰好达到目标值)
即要求正负偏差变量都尽可能的小
在这里插入图片描述

表示为使负偏差变量与系数乘积+正偏差变量与系数乘积最小

(2)

要求不能超过目标值(例如不能超过预算),即允许达不到目标值,使得正偏差变量尽可能的小

在这里插入图片描述

表示为正偏差变量与系数乘积最小

(3)

要求能超过目标值,即超过量不限,但是负偏差尽可能要小

在这里插入图片描述

表示为负偏差变量与系数乘积最小

实例

  1. 某单位领导在考虑本单位职工的升级调资方案时,要求相关部门遵守以下的规定:

(1)年工资总额不超过1500000元;

(2)每级的人数不超过定编规定的人数;

(3)II、III级的升级面尽可能达到现有人数的20%;

(4)III级不足编制的人数可录用新职工,又I级的职工中有10%的人要退休. 相关资料汇总于表2-1中,试为单位领导拟定一个满足要求的调资方案.

在这里插入图片描述

求解思路

为了考虑选取最优的调资方案,需要考虑三个约束条件,显然前两个约束条件为刚性约束,而第三个约束条件为柔性约束。

分别建立目标约束

设由II晋升为I的人数为x1,由III晋升为II的人数为x2,招聘为III的人数为x3,dn_为未满误差,dn为过盈误差,n=1.2.3.4.5

年工资总额不超标
(1)
为保证调资后的年工资预算仍在指标范围内,有约束条件
在这里插入图片描述
(2)
每一级的人数不超过定编规定的人数
在这里插入图片描述

(3)
II,III的升级面尽量达到现有人数的20%
在这里插入图片描述
最终得到目标规划的数学模型

在这里插入图片描述
通过lingo软件求解得第一级偏差和第二级偏差都为0,代入求得第三极偏差为-1

代入原模型解得
X1=2
X2=4
X3=6

lingo求解程序请见传送门:
https://blog.csdn.net/qq_43649786/article/details/98359558

这是一个简单的使用Python进行数学建模的例子,用于预测未来几年美国人口的增长趋势: ```python import numpy as np import matplotlib.pyplot as plt # 美国人口历史数据(1790年至2010年) us_population = np.array([3.9, 5.3, 7.2, 9.6, 12.9, 17.1, 23.2, 31.4, 38.6, 50.2, 62.9, 75.9, 91.9, 105.7, 122.8, 131.7, 151.3, 179.3, 203.3, 226.5, 248.7, 281.4, 308.7, 332.9, 360.9, 387.7, 420.0, 454.8, 485.8, 513.0, 544.0, 573.7, 606.9, 636.2, 666.2, 693.0, 719.9, 747.0, 770.6, 793.1, 814.3, 836.9, 860.6, 884.3, 902.2, 922.3, 939.9, 956.5, 973.0, 986.8, 1000.5, 1013.2, 1022.0, 1031.4, 1042.8, 1055.0, 1064.4, 1073.1, 1081.9, 1090.3, 1100.0, 1110.0, 1120.0, 1130.0, 1140.0, 1150.0, 1160.0, 1170.0, 1180.0, 1190.0, 1200.0, 1210.0, 1220.0, 1230.0, 1240.0, 1250.0]) # 美国人口增长率 us_population_growth_rate = np.diff(us_population) / us_population[:-1] # 用一次多项式拟合增长率 polyfit_coef = np.polyfit(np.arange(len(us_population_growth_rate)), us_population_growth_rate, 1) # 预测未来30年的美国人口 future_population = np.zeros(30) future_population[0] = us_population[-1] for i in range(1, 30): future_population[i] = future_population[i-1] * (1 + polyfit_coef[0]) # 绘制历史数据和预测结果的折线图 plt.plot(np.arange(len(us_population)), us_population, 'o-', label='Historical data') plt.plot(np.arange(len(us_population), len(us_population)+30), future_population, 'o-', label='Prediction') plt.xlabel('Year') plt.ylabel('Population (million)') plt.title('US Population Projection') plt.legend() plt.show() ``` 这个例子使用了NumPy和Matplotlib库来处理数据和绘制图形。它首先将美国人口历史数据加载到一个NumPy数组中,然后计算增长率。接下来,使用一次多项式拟合增长率,得到一个线性方程,用于预测未来的人口增长。最后,使用预测的增长率计算未来30年的人口数据,并使用Matplotlib绘制历史数据和预测结果的折线图。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

狗头狗不狗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值