【从零开始部署SAM(Segment Anything Model )大模型 1 开源项目介绍与在线测试】

介绍

SAM(Segment Anything Model)是一个用于图像分割任务的深度学习模型,由Meta的研究者提出。SAM模型旨在提供一个通用的、交互式的图像分割工具,它能够根据用户提供的简单交互式提示(prompts)来分割图像中的任意对象。

SAM模型在图像分割领域提供了一种新的交互方式,它降低了用户参与的门槛,使得没有专业知识的用户也能够进行图像分割任务。此外,它的交互式特性也使得它在某些应用场景下比全自动的分割模型更加灵活和准确。

Segment Anything Model 的目标是生成高质量的对象遮罩(masks),这些遮罩可以通过输入提示(如点或框)从图像中生成。它旨在为图像中的所有对象生成遮罩,具有强大的零样本(zero-shot)性能,能够处理各种图像分割任务

特点

高质量遮罩生成: SAM能够从简单的输入提示生成精确的对象遮罩。
零样本性能: 即使没有针对特定任务的训练,SAM也能在多种分割任务上表现出色。
大规模数据集训练 :SAM在1100万个图像和11亿个遮罩的数据集上进行了训练

支持的不同模式

基于提示的分割: SAM可以根据用户给出的点或框等提示生成特定对象的遮罩。
自动遮罩生成: SAM还可以自动为整个图像生成遮罩。

编程架构

Python:主要的编程语言,用于实现模型和相关工具。
PyTorch:用于深度学习模型的构建和训练。
TorchVision:用于图像处理和转换。

用途扩展

ONNX导出:SAM的轻量级遮罩解码器可以导出为ONNX格式,以便在任何支持ONNX运行时的环境中运行,例如在浏览器中。
Web演示:提供了一个简单的React应用程序,展示了如何在Web浏览器中使用导出的ONNX模型进行遮罩预测。
模型检查点:提供了不同后端大小的三个模型版本。
数据集:提供了数据集的概述和下载链接,以及如何加载和解码遮罩数据的说明

项目网站

segment-anything

在这里插入图片描述

线上demo

在线测试网址
和项目一样,线上测试网站同样有两种使用方法,全图分割和主动选择
在这里插入图片描述

除了网站提供的图像之外,还支持自己上传图像,以人体的CT扫描图像为例
在这里插入图片描述

在这里插入图片描述
左侧选择栏给了三种模式,点击,框选,和整图分割
点击:
在这里插入图片描述
框选:
在这里插入图片描述
整图分割
在这里插入图片描述

下载

在这里插入图片描述
不过我个人还是建议用Ubuntu新建一个conda环境通过git进行下载
最大的好处是在后续的一系列使用中可以使用import segment_anything从而进行一系列的处理开发,环境配置和ubunut下的一系列开发在下一篇

都看到这了,点个赞再走吧彦祖

### 图像分割模型在Windows平台上的实现方法 要在Windows平台上实现图像分割模型,可以按照以下流程操作: #### 创建环境 首先,在Windows环境中安装Python以及必要的依赖库。推荐使用Anaconda来管理虚拟环境和包[^1]。 ```bash # 安装 Anaconda 或 Miniconda (https://www.anaconda.com/) # 创建一个新的 Python 虚拟环境 conda create -n image_segmentation python=3.8 conda activate image_segmentation ``` 接着,安装深度学习框架(如TensorFlow或PyTorch),以及其他所需的库。 ```bash pip install torch torchvision torchaudio pip install numpy matplotlib opencv-python scikit-image ``` --- #### 数据准备标注 为了训练图像分割模型,需要准备好带有标签的数据集。如果手动标注耗时较长,可以借助自动化工具完成这一过程。例如,引用中提到的SAM辅助标注工具可以帮助快速生成高质量的分割掩码[^3]。 - **数据收集**:整理待处理的图片文件夹。 - **数据标注**:利用开源软件Labelme或其他工具标记像素级别的类别信息,并保存为JSON格式或者PNG掩码文件。 --- #### 训练模型 基于已有的框架构建自定义网络结构进行迁移学习。这里介绍两种主流方案——Faster R-CNN扩展版Mask R-CNN[^2] 和 SAM(Segment Anything Model): ##### 方法一: 使用 Mask R-CNN Mask R-CNN 是一种经典的实例分割算法,它通过附加分支预测每个感兴趣区域(ROI)内的二值化mask向量实现了语义理解能力提升。 以下是简单的 PyTorch 实现代码片段: ```python import torch from torchvision.models.detection.mask_rcnn import maskrcnn_resnet50_fpn def load_model(num_classes): model = maskrcnn_resnet50_fpn(pretrained=True) in_features = model.roi_heads.box_predictor.cls_score.in_features model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes) hidden_layer = 256 model.roi_heads.mask_predictor = MaskRCNNPredictor( in_channels=model.roi_heads.mask_head.conv5_mask.out_channels, dim_reduced=hidden_layer, num_classes=num_classes) return model model = load_model(num_classes=91) # COCO预设分类数 device = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(device) ``` ##### 方法二: Segment Anything Model (SAM) Segment Anything Model 提供了一种新颖的方式来自动生成精确的对象边界框及其内部细节描述。其优势在于无需大量人工干预即可获得良好效果。 加载官方提供的权重文件并测试单张输入图像是非常直观的过程: ```python from segment_anything import sam_model_registry, SamAutomaticMaskGenerator import cv2 sam_checkpoint = "./sam_vit_h_4b8939.pth" model_type = "vit_h" device = "cuda" if torch.cuda.is_available() else "cpu" sam = sam_model_registry[model_type](checkpoint=sam_checkpoint).to(device=device) mask_generator = SamAutomaticMaskGenerator(sam) image_path = './example.jpg' image = cv2.imread(image_path) masks = mask_generator.generate(image) print(f"Generated {len(masks)} masks.") ``` --- #### 部署 API 接口 当模型训练完成后,可以通过Flask/Django搭建RESTful服务接口以便外部程序调用该功能。 示例 Flask 应用如下所示: ```python from flask import Flask, request, jsonify app = Flask(__name__) @app.route('/segment', methods=['POST']) def predict(): file = request.files['file'] img_bytes = file.read() result = process_image(img_bytes) # 自定义函数执行推理逻辑 return jsonify({'result': result}) if __name__ == '__main__': app.run(host='0.0.0.0', port=5000) ``` --- ### 总结 综上所述,从零开始到成功部署一套完整的图像分割解决方案涉及多个环节的工作流设计。无论是采用传统卷积神经网络还是新兴Transformer架构驱动的大规模预训练模型,都需要开发者具备扎实的技术功底才能顺利完成项目开发周期内各个阶段的任务目标。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

狗头狗不狗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值