2023.4.7 pytorch学习记录(torchvision中数据集的使用、DataLoader中数据集的使用、nn.Module的基本使用、卷积的基本操作)

该文展示了如何在PyTorch中使用torchvision加载和预处理CIFAR10数据集,利用DataLoader进行批量处理,以及通过SummaryWriter在TensorBoard中可视化数据。同时,文中还介绍了卷积神经网络的基础操作,包括不同步长和填充的卷积计算。
摘要由CSDN通过智能技术生成
import torchvision
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader

#1.torchvision中数据集的使用.........................................................

dataset_transform = torchvision.transforms.Compose([
    torchvision.transforms.ToTensor()
])

#下载数据集CIFAR10 通过datasets
train_set = torchvision.datasets.CIFAR10(root="./dataset", train=True, transform=dataset_transform, download=True)
test_set = torchvision.datasets.CIFAR10(root="./dataset", train=False, transform=dataset_transform, download=True)
'''

''' 数据集的基本观察
print(test_set[0])
print(test_set.classes)

img, target = test_set[0]
print(img)
print(target)
print(test_set.classes[target]) 
img.show()  #打印出猫的图片
'''

#print(train_set[0])

'''用SummaryWriter读取数据集中的图片
writer = SummaryWriter("p10")  #在终端用tensorboard --logdir='p10'打开
for i in range(10):
    img, target = test_set[i]
    writer.add_image("test_set", img, i)

writer.close()
'''


#2.DataLoader中数据集的使用.............................................................

test_data = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor())

test_loader = DataLoader(dataset=test_data, batch_size=64, shuffle=True, num_workers=0, drop_last=True)

# 测试数据集中第一张图片及target
img, target = test_data[0]
print(img.shape)
print(target)

writer = SummaryWriter("dataloader")  
               #tensorboard --logdir='dataloader' --port=6008  名称要一致否则无图片
for epoch in range(2):
    step = 0
    for data in test_loader:
        imgs, targets = data
        # print(imgs.shape)
        # print(targets)
        writer.add_images("Epoch: {}".format(epoch), imgs, step)  #将epoch填入{}中
        step = step + 1

writer.close()

import torch
from torch import nn
import torch.nn.functional as F


'''
#3.nn.Module的基本使用..................................................................
class Tudui(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, input):
        output = input + 1
        return output


tudui = Tudui()
x = torch.tensor(1.0)
output = tudui(x)
print(output)
'''


#4.卷积的基本操作.......................................................................
input = torch.tensor([[1, 2, 0, 3, 1],    #输入图像
                      [0, 1, 2, 3, 1],
                      [1, 2, 1, 0, 0],
                      [5, 2, 3, 1, 1],
                      [2, 1, 0, 1, 1]])

kernel = torch.tensor([[1, 2, 1],         #卷积核
                       [0, 1, 0],
                       [2, 1, 0]])

input = torch.reshape(input, (1, 1, 5, 5))
kernel = torch.reshape(kernel, (1, 1, 3, 3))

print(input.shape)
print(kernel.shape)

output = F.conv2d(input, kernel, stride=1)   
print(output)

output2 = F.conv2d(input, kernel, stride=2)
print(output2)

output3 = F.conv2d(input, kernel, stride=1, padding=1)    #stride->步长为1,padding->进行0填充
print(output3)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值