图神经网络
文章平均质量分 63
ZDA2022
这个作者很懒,什么都没留下…
展开
-
吴恩达——论文阅读技巧
泛读5篇论文,找出其中有价值的进行精读,并了解参考文献。③阅读全文(除数学)④那些其他点值得跟进。原创 2022-08-27 14:05:39 · 215 阅读 · 1 评论 -
文献阅读-一种基于机器学习方法的海事监视雷达海杂波抑制方法
训练集 A 由单目标、高 SCR 的雷达数据组成,训练集 B 包含目标较多、不同 SCR 的雷达数据。模型训练在仿真数据集上进行,分别对模拟数据、实测数据从海杂波抑制改进因子σ、目标结构相似度两个维度进行比较,从而体现该网络的优越性。海杂波抑制网络的损失函数由三个部分组成:对抗性损失、循环一致性损失和目标一致性损失。频域处理:通过傅里叶等变换提取杂波、目标的信息,并多普勒滤波器去除海杂波分量。SSIM测量杂波抑制前后目标区域的相似度。基于子空间:对子空间的杂波分量进行建模,利用海杂波时空相关性进行抑制。原创 2022-08-23 16:54:31 · 1369 阅读 · 0 评论 -
模型训练技巧总结
此时仅对输入的4层batch数据进行归一化,而没有偏置等操作。其中pred为模型输出,label为标签。2、F.nll_loss使用数据要求。原创 2022-08-19 19:52:18 · 226 阅读 · 0 评论 -
GNN文献阅读-Graph Convolution Neural Network-Based Data Association for Online Multi-Object Tracking
1、摘要文章提出了一种基于GCN的多目标跟踪(MOT)算法,该算法由特征提取模块与更新特征模块组成。特征提取模块:利用对象的态势特征对目标进行跟踪。新的更新机制:结合神经网络的输出+跟踪器与检测节点间的节点相似度,来更新每一层。 通过聚合更新的边缘特征+跟踪器与检测器间的链接强度来更新节点特征优点:节点、边缘更新、边缘分类的三个网络是为了最小化网络参数以实现更快的多目标跟踪通过亲和力损失来进行端到端的学习2、多目标跟踪常见方法的跟踪性能取决于两点:①目标检测原创 2022-06-12 15:33:43 · 611 阅读 · 0 评论 -
GNN文献阅读-Maritime Target Detection Based on Radar GraphData and Graph Convolutional Network
海上目标检测任务较为复杂传统基于概率理论方法(将海杂波视为随机过程)性能较低传统深度学习(CNNs)独立处理每个信号样本,很少使用时空域相关信息GCN很好的利用了雷达信号中包含的信息传统CNNs在提取高维特征方面具有良好的性能与泛化能力但在海上目标检测上存在一定的困难: (1)海事雷达的观测区域大,使得一定时空范围对应的回波信号数据量小,导致信号特征不足 (2)海上目标的特征与海杂波高度相似,深度学习方法不能很好地区分 (3)深度学习模型可以实现端到端的处理和自动特原创 2022-06-02 13:03:54 · 345 阅读 · 0 评论 -
GNN文献阅读-Dynamic Graph-Level Neural Network for SARImage Change Detection
1、摘要提出了一种端到端的动态图级神经网络 (DGLNN),以在图级利用每个像素邻域块的局部结构,并学习更具判别力的图来进行变化检测在 DGLNN 的训练中,使用 K-最近邻域来重建节点之间的边,而不是两个节点之间的固定边,以便每个节点利用来自不同相邻节点的特征2、传统合成孔径雷达(SAR)图像变化检测方法:基于差分图像(DI)的管道开发的但SAR图像通常会受到散斑的影响,检测精度受影响GNN具有良好的性能与高可解释性3、实验思想从双时相 SAR 图像中提取的每个三通道块构建一个动态图,并DI,其边缘逐层动原创 2022-06-01 20:26:32 · 320 阅读 · 0 评论 -
图神经网络-论文精读-“A Gentle Introduction to Graph Neural Networks“
1、文章主要工作:解释了现代图神经网络①什么样的数据最自然的表述为图表②图表与其他类型数据的不同之处,以及在使用图表时必须做出的一些专门选择③构建GNN:从简单的实现到最先进的GNN模型④构建GNN平台,修改不同参数从而得到不同的结果,以了解GNN组件的作用2、什么是图图表示实体(节点)集合之间的关系(边)为了进一步描述每个节点、边或整个图,我们可以将信息存储在图中的每一个片段中。还可以通过将方向性与边(有向、无向)相关联来专门化图3、什么样的数据最自原创 2022-04-07 10:22:45 · 2071 阅读 · 0 评论