GNN文献阅读-Maritime Target Detection Based on Radar GraphData and Graph Convolutional Network

Maritime Target Detection Based on Radar Graph Data and Graph Convolutional Network

基于雷达图数据和图卷积网络的海上目标检测

1、摘要

海上目标检测任务较为复杂

传统基于概率理论方法(将海杂波视为随机过程)性能较低

传统深度学习(CNNs)独立处理每个信号样本,很少使用时空域相关信息

GCN很好的利用了雷达信号中包含的信息

2、传统CNNs的局限性

传统CNNs在提取高维特征方面具有良好的性能与泛化能力

但在海上目标检测上存在一定的困难:

        (1)海事雷达的观测区域大,使得一定时空范围对应的回波信号数据量小,导致信号特征不足

        (2)海上目标的特征与海杂波高度相似,深度学习方法不能很好地区分

        (3)深度学习模型可以实现端到端的处理和自动特征提取,但输入的数据样本是相互独立处理的,结果是数据样本之间以及样本与整个数据集之间的相关信息丢失。

3、图表示雷达数据

雷达信号数据没有明显的图结构,但包含时域和空间域的图信息。在处理部分数据时,在相邻时间和地点采集的信号可以提供重要信息。

图结构用于定于检测单元,图卷积用于提取检测单元特征并聚合相邻检测单元信息,时信号样本不再独立。

文章主要贡献为将雷达数据用图的形式表现,从而在图上进行特征提取与聚合

4、海上机动目标信号模型

雷达发射线性频率调制(LFM)信号

其中 fc 是雷达载波频率,Tp 是脉冲宽度,k = B/Tp 是频率调制率,B 是带宽。则雷达在时间 t 接收到的信号为

 解调和脉冲压缩后改写为

 泰勒展开得:

 

5、使用图形映射和 GCN 进行目标检测

首先,雷达信号图数据是根据提取的驻留雷达信号的时间范围数据构建的。节点被定义为一个rangebin中的一维信号部分,节点特征被定义为对应信号的频率分布。

其次,应用时间、空间和功率信息来定义边缘。

        节点:短序列信号

驻留模式雷达信号是一个二维矩阵数据,即距离和慢时间,具有 N 个距离箱,每个距离箱包含一个长度为 L 个采样点的时间序列。每个时间序列被分成几个长度为l的短序列,每个短序列信号对应一个节点vi j 。节点特征是对应信号的频率分布。

         边:节点vi j 对应的信号的起始时间为ti j ,信号对应的range bin 与雷达的距离为ri j ,信号的平均功率为pi j ,节点vi j 之间的边值节点vmn定义为

减少冗余信息:对边重新定义

 

6、实验结果与对比实验角度

 数据集构建和模型训练:

使用具有高斯背景的模拟目标信号来训练和测试所提出的方法。雷达发射频率为 3 GHz。

采样频率为 1 kHz。观察持续时间为 50 秒。最大观测距离为 8000 m,每个距离箱的宽度为 40 m。

然后,将雷达回波信号数据作为 200 × 50 000 矩阵获得。

前 25 秒的数据用于 GCN 模型训练,后 25 秒的数据用于测试。

对于训练集,随机选择 20% 的节点进行验证。验证集分为杂波集和目标集两个子集,分别由杂波样本和目标样本组成。

不同信噪比下的实验结果

 不同信噪比时的虚警漏警

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值