
机器学习
文章平均质量分 60
ZDA2022
这个作者很懒,什么都没留下…
展开
-
文献阅读-基于深度卷积神经网络的海面小目标多帧检测
每个 RD 频谱被分割成块和单元的多个多尺度检测单元,然后通过基于块的大规模初步检测和单元,使用多尺度帧内检测网络 (IADN) 将这些单元分类为目标存在或目标不存在- 基于小规模精细检测。对概率值大于阈值的数据块进行更精细化的操作,分为4*4的数据块,经过网络后输出为小块的存在目标的概率,以实现目标检测。低 SCR 下,强杂波或噪声的积分可能会超过真实运动目标的积分度量函数,从而导致检测性能下降。使用目标和海杂波之间的特征差异和帧间相关性来实现帧内和帧间检测。基于深度卷积神经网络的海面小目标多帧检测。原创 2022-09-14 14:19:38 · 1118 阅读 · 0 评论 -
文献阅读-基于 CNN-Swin Transformer Network 的 LPI 雷达信号识别
相比于 CNN 模 型的不变性和局部性,特征之间依赖关系差, Transformer 模型的 SA 机制不受局部相互作用限 制,能够学习最合适任务目标的归纳偏置。④短时傅里叶+GoogleNet/AlexNet,实现调制信号识别。CNN缺陷:不擅长捕捉全局信息,感受野受限,对信噪比要求较高。⑤时频分析+改进AlexNet,实现调制信号识别。⑥扩张残差网络+时频分析,实现辐射源分类。③小波变换+残差网络,实现调制信号识别。①时频图像+CNN,以信号调制识别。②时频分析+CNN,特征提取与分类。原创 2022-09-05 10:31:07 · 1134 阅读 · 0 评论 -
吴恩达——论文阅读技巧
泛读5篇论文,找出其中有价值的进行精读,并了解参考文献。③阅读全文(除数学)④那些其他点值得跟进。原创 2022-08-27 14:05:39 · 233 阅读 · 1 评论 -
文献阅读-一种基于机器学习方法的海事监视雷达海杂波抑制方法
训练集 A 由单目标、高 SCR 的雷达数据组成,训练集 B 包含目标较多、不同 SCR 的雷达数据。模型训练在仿真数据集上进行,分别对模拟数据、实测数据从海杂波抑制改进因子σ、目标结构相似度两个维度进行比较,从而体现该网络的优越性。海杂波抑制网络的损失函数由三个部分组成:对抗性损失、循环一致性损失和目标一致性损失。频域处理:通过傅里叶等变换提取杂波、目标的信息,并多普勒滤波器去除海杂波分量。SSIM测量杂波抑制前后目标区域的相似度。基于子空间:对子空间的杂波分量进行建模,利用海杂波时空相关性进行抑制。原创 2022-08-23 16:54:31 · 1574 阅读 · 0 评论 -
模型训练技巧总结
此时仅对输入的4层batch数据进行归一化,而没有偏置等操作。其中pred为模型输出,label为标签。2、F.nll_loss使用数据要求。原创 2022-08-19 19:52:18 · 249 阅读 · 0 评论 -
Pytorch深度学习入门与实战(笔记)
①bias=True)MLPmodel()②nn.ReLU())原创 2022-07-21 17:01:46 · 1763 阅读 · 1 评论 -
基于深度学习的小目标检测方法
1、小目标①像素点小于32*32的物体②目标尺寸为原图的0.12、小目标检测面临的困难①底层特征缺乏语义信息.在现有的目标检 测模型中,一般使用主干网络的底层特征检测小目 标,但底层特征缺乏语义信息,给小目标的检测带来 了一定的困难.②小目标的训练样本数据量较少.③检测模型使用的主干网络与检测任务的差异3、基于多尺度预测(YOLO、Faster R-CNN、SSD)多尺度预测指的是在多个不同尺度的特征图上分别对物体的类别和坐标进行预测①基于图像金字塔的多尺度目标检测(方法有利于小目标检测、实时性差)--改进原创 2022-06-23 13:32:51 · 2865 阅读 · 1 评论 -
GNN文献阅读-Graph Convolution Neural Network-Based Data Association for Online Multi-Object Tracking
1、摘要文章提出了一种基于GCN的多目标跟踪(MOT)算法,该算法由特征提取模块与更新特征模块组成。特征提取模块:利用对象的态势特征对目标进行跟踪。新的更新机制:结合神经网络的输出+跟踪器与检测节点间的节点相似度,来更新每一层。 通过聚合更新的边缘特征+跟踪器与检测器间的链接强度来更新节点特征优点:节点、边缘更新、边缘分类的三个网络是为了最小化网络参数以实现更快的多目标跟踪通过亲和力损失来进行端到端的学习2、多目标跟踪常见方法的跟踪性能取决于两点:①目标检测原创 2022-06-12 15:33:43 · 708 阅读 · 0 评论 -
GNN文献阅读-Maritime Target Detection Based on Radar GraphData and Graph Convolutional Network
海上目标检测任务较为复杂传统基于概率理论方法(将海杂波视为随机过程)性能较低传统深度学习(CNNs)独立处理每个信号样本,很少使用时空域相关信息GCN很好的利用了雷达信号中包含的信息传统CNNs在提取高维特征方面具有良好的性能与泛化能力但在海上目标检测上存在一定的困难: (1)海事雷达的观测区域大,使得一定时空范围对应的回波信号数据量小,导致信号特征不足 (2)海上目标的特征与海杂波高度相似,深度学习方法不能很好地区分 (3)深度学习模型可以实现端到端的处理和自动特原创 2022-06-02 13:03:54 · 421 阅读 · 0 评论 -
读书笔记-深度学习入门之pytorch-第六章(含循环实现手写数字识别)
31、生成模型一系列用于随机生成课观测数据的模型两个主要功能:学习一个概率分布、生成数据(1)自动编码器最开始作为一种数据的压缩算法特点:1>与数据的相关程度高,只能压缩与训练数据相似的数据2>压缩后数据有损,数据降维导致的应用:1>数据去噪2>可视化降维3>生成数据2、手写数字生成(1)全连接方法from google.colab import drivedrive......原创 2022-04-25 20:51:58 · 267 阅读 · 0 评论 -
读书笔记-深度学习入门之pytorch-第五章(含循环实现手写数字识别)(LSTM、GRU代码详解)
1、RNN优点:(记忆性)RNN对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息2、循环神经网络结构与原理每一时刻的隐藏层不仅由该时刻的输入层决定,还由上一时刻的隐藏层决定深层网络结构:双向循环神经网络:网络先从序列正方向读取数据,再从反方向读取数据,最后两种输出结果一起形成网络的最终输出循环神经网络能够很好的解决短时依赖问题,但对于长时依赖问题的效果不是很好3、LSTM(长短时记忆网络)4、GRU5、LST...原创 2022-04-23 22:58:15 · 2909 阅读 · 1 评论 -
读书笔记-深度学习入门之pytorch-第四章(含卷积神经网络实现手写数字识别)(详解)
1、卷积神经网络在图片识别上的应用(1)局部性:对一张照片而言,需要检测图片中的局部特征来决定图片的类别(2)相同性:可以用同样的模式去检测不同照片的相同特征,只不过这些特征处于图片中不同的位置,但是特征检测所做的操作是不变的(3)不变性:对于一张大图片,如果我们进行下采样,图片的性质基本保持不变2、全连接神经网络处理大尺寸图像的缺点:(1)首先将图像展开为向量会丢失空间信息;(2)其次参数过多效率低下,训练困难;(3)同时大量的参数也很快会导致网络过拟合。...原创 2022-04-23 16:18:21 · 2640 阅读 · 0 评论 -
读书笔记-深度学习入门之pytorch-第三章(含全连接方法实现手写数字识别)(详解)
目录1、张量2、分类问题3、激活函数(1)sigmoid函数(2)Tanh函数(3)ReLU函数(4)SoftMax函数(5)Maxout函数4、模型表示能力5、反向传播算法6、优化算法(1)torch.optim.SGD(2) torch.optim.Adagrad:(3)torch.optim.RMSprop(4)torch.optim.Adadelta(5)torch.optim.Adam(AMSGrad)(实际中常用)(6)...原创 2022-04-22 16:32:40 · 2487 阅读 · 0 评论 -
Hands-On Machine learning with Scikit-Learn&TensorFlow-书籍阅读-第一章:机器学习概览
一、机器学习分类:准则1:是否在人类监督下进行训练①监督学习:在监督学习中,用来训练算法的训练数据包含了答案,称为标签典型实例:分类、预测重要算法:K近邻算法、线性回归、逻辑回归、支持向量机(SVM)、决策树和随机森林、神经网络②非监督学习:在非监督学习中,你可能猜到了,训练数据是没有加标签的典型实例:检测相似访客分组、可视化算法、降维、异常检测、关联规则学习重要算法:聚类:K 均值、层次...原创 2022-04-05 16:26:01 · 1088 阅读 · 0 评论