一、SGD
描述
随机梯度下降法(stochastic gradient descent),策略是朝着当前所在位置的坡度最大的方向前进。
数学式
Python类
class SGD:
def __init__(self, lr=0.01):
self.lr = lr
def update(self, params, grads):
for key in params.keys():
params[key] -= self.lr * grads[key]
二、Momentum
描述
“动量‘,参照小球在碗中滚动的物理规则进行移动。
数学式
Python类
class Momentum:
def __init__(self, lr=0.01, momentum=0.9):
self.lr = lr
self.momentum = momentum
self.v = None
def updade(self, params, grads):
if self.v is None:
self.v = {}
for key, val in params.items():
self.v[key] = np.zeros_like(val)
for key in params.keys():
self.v[key] = self.momentum * self.v[ley] - self.lr * grads[key]
params[key] += self.v[key]
三、AdaGrad
描述
Ada来自英文单词Adaptive,即“适当的”的意思;AdaGrad会为参数的每个元素适当地调整更新步伐(学习率),即学习率衰减,随着学习的进行,使学习率逐渐减小,一开始“多”学,然后逐渐“少”学。
数学式
Python类
class AdaGrad:
def __init__(self, lr=0.01):
self.lr = lr
self.h = None
def update(self, params, grads):
if self.h is None:
self.h = {}
for key, val in params.items():
self.h[key] = np.zeros_like(val)
for key in params.keys():
self.h[key] += grads[key] * grads[key]
params[key] -= self.lr * grads[key] / (np.sqrt(self.h[key]) + 1e-7)
四、Adam
描述
融合了Momentum和AdaGrad的方法。
Python类
class Adam:
"""Adam (http://arxiv.org/abs/1412.6980v8)"""
def __init__(self, lr=0.001, beta1=0.9, beta2=0.999):
self.lr = lr
self.beta1 = beta1
self.beta2 = beta2
self.iter = 0
self.m = None
self.v = None
def update(self, params, grads):
if self.m is None:
self.m, self.v = {}, {}
for key, val in params.items():
self.m[key] = np.zeros_like(val)
self.v[key] = np.zeros_like(val)
self.iter += 1
lr_t = self.lr * np.sqrt(1.0 - self.beta2**self.iter) / (1.0 self.beta1**self.iter)
for key in params.keys():
#self.m[key] = self.beta1*self.m[key] + (1-self.beta1)*grads[key]
#self.v[key] = self.beta2*self.v[key] + (1-self.beta2)*(grads[key]**2)
self.m[key] += (1 - self.beta1) * (grads[key] - self.m[key])
self.v[key] += (1 - self.beta2) * (grads[key]**2 - self.v[key])
params[key] -= lr_t * self.m[key] / (np.sqrt(self.v[key]) + 1e-7)
#unbias_m += (1 - self.beta1) * (grads[key] - self.m[key]) # correct bias
#unbisa_b += (1 - self.beta2) * (grads[key]*grads[key] - self.v[key]) # correct bias
#params[key] += self.lr * unbias_m / (np.sqrt(unbisa_b) + 1e-7)
四种最优化方法的比较:
1、求 f(x,y) = (1/20)*x^2 + y^2 的最小值
2、基于MNIST数据集的更新方法的比较
PS:
(目前)并不存在能在所有问题中都表现良好的方法。这4种方法各有各的特点,都有各自擅长解决的问题和不擅长解决的问题。
很多研究中至今仍在使用SGD。 Momentum和AdaGrad也是值得一试的方法。最近,很多研究人员和技术人员都喜欢用Adam。