在本章中,我们将深入探索深度学习计算的关键组件, 即模型构建、参数访问与初始化、设计自定义层和块、将模型读写到磁盘, 以及利用GPU实现显著的加速。
块
基本概念
-
**块(block)**可以描述单个层、由多个层组成的组件、或整个模型本身。
eg: 由多个层组合成块:
-
编程角度—块==类:块由类(class)表示。
-
它的任何子类都必须定义一个将其输入转换为输出的前向传播函数forward, 并且必须存储任何必需的参数。
-
由于可以自动微分,所以backward过程可以省去。
构造自定义块
回顾多层感知机
- 回顾一下多层感知机代码:
import torch
from torch import nn
from torch.nn import functional as F
net = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
X = torch.rand(2, 20)
net(X)
- 这里是通过实例化nn.Sequential来构建我们的模型, 层的执行顺序是作为参数传递的。
- nn.Sequential定义了一种特殊的Module( Module是PyTorch中表示一个块的类,所有块都要继承它!), 它维护了一个由Module组成的有序列表。
- 这里的两个全连接层都是Linear类的实例, Linear类本身就是Module的子类。
- 到目前为止,我们一直在通过net(X)调用我们的模型来获得模型的输出。 这实际上是net.__call__(X)的简写。
- 这个前向传播函数非常简单: 它将列表中的每个块连接在一起,将每个块的输出作为下一个块的输入。
自定义块
- 每个块必须提供的基本功能:
- 将输入数据作为其前向传播函数的参数。
- 通过前向传播函数forward来生成输出。
- 计算其输出关于输入的梯度,可通过其反向传播函数进行访问。通常这是自动发生的。
- 存储和访问前向传播计算所需的参数。
- 根据需要初始化模型参数。
- 从零开始编写MLP块:
- 下面的MLP类继承了表示块的类nn.Module。
- 我们的实现只需要提供我们自己的构造函数(Python中的__init__函数)和前向传播函数。对于反向传播函数或参数初始化, 系统将自动生成。
class MLP(nn.Module):
# 用模型参数声明层。这里,我们声明两个全连接的层
def __init__(self):
# 调用MLP的父类Module的构造函数来执行必要的初始化。
# 这样,在类实例化时也可以指定其他函数参数,例如模型参数params(稍后将介绍)
super().__init__()
self.hidden = nn.Linear(20, 256) # 隐藏层
self.out = nn.Linear(256, 10) # 输出层
# 定义模型的前向传播,即如何根据输入X返回所需的模型输出
def forward(self, X):
# 注意,这里我们使用ReLU的函数版本,其在nn.functional模块中定义。
return self.out(F.relu(self.hidden(X)))
试一下:
net = MLP() #实例化MLP对象
net(X) #调用__call__()
块的一个主要优点是它的多功能性。
我们可以子类化块以创建层(如全连接层的类)、 整个模型(如上面的MLP类)或具有中等复杂度的各种组件。
顺序块:Sequential类
- 自定义一个MySequential类,提供和默认Sequential类相同的功能。
- __init__函数接收args参数,将每个参数模块逐个添加到有序字典_modules中。
- 当MySequential的前向传播函数被调用时, 每个添加的块都按照它们被添加的顺序执行。
class MySequential(nn.Module):
def __init__(self, *args):
super().__init__()
for idx, module in enumerate(args):
# 这里,module是Module子类的一个实例。我们把它保存在'Module'类的成员
# 变量_modules中。_module的类型是OrderedDict
self._modules[str(idx)] = module
def forward(self, X):
# OrderedDict保证了按照成员添加的顺序遍历它们
for block in self._modules.values():
X = block(X)
return X
- 调用它来实现MLP:
net = MySequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
net(X)
在forward()中执行自定义计算&&混搭各种块
- 在forward()中执行自定义计算,而不是简单地依赖库函数:
- 在这个FixedHiddenMLP模型中,我们实现了一个隐藏层, 其权重(self.rand_weight)在实例化时被随机初始化。 这个权重不是一个模型参数,不会被反向传播更新,也就是说是一个不更新的常量。
- 可以看到,我们可以在forward中添加任何想要的计算。(当然本例中没有任何实际意义)
class FixedHiddenMLP(nn.Module):
def __init__(self):
super().__init__()
# 不计算梯度的随机权重参数。因此其在训练期间保持不变
self.rand_weight = torch.rand((20, 20), requires_grad=False)
self.linear = nn.Linear(20, 20)
def forward(self, X):
X = self.linear(X)
# 使用创建的常量参数以及relu和mm函数
X = F.relu(torch.mm(X, self.rand_weight) + 1)
# 复用全连接层。这相当于两个全连接层共享参数
X = self.linear(X)
# 控制流
while X.abs().sum() > 1:
X /= 2
return X.sum()
net = FixedHiddenMLP()
net(X)
- 混搭各种块
只要它是nn.Module的子类,就可以大胆地进行嵌套调用
class NestMLP(nn.Module):
def __init__(self):
super().__init__()
self.net = nn.Sequential(nn.Linear(20, 64), nn.ReLU(),
nn.Linear(64, 32), nn.ReLU())
self.linear = nn.Linear(32, 16)
def forward(self, X):
return self.linear(self.net(X))
chimera = nn.Sequential(NestMLP(), nn.Linear(16, 20), FixedHiddenMLP())
chimera(X)
小结
- 一个块可以由许多层组成;一个块可以由许多块组成。
- 块可以包含任意自定义代码。
- 块负责大量的内部处理,包括参数初始化和反向传播。
- 层和块的顺序连接由Sequential块处理。