逐次变分模态分解SVMD数据重构可输出均方根误差,信噪比,各分解分量的相关系数指标。附案例数据 可直接运行

本文介绍了使用Excel数据导入原始信号,进行离散傅立叶变换(FFT),并通过SVMD(SVM的变种)算法提取频谱特征。文章关注模型的紧凑性和时间步长设置,旨在实现高效的时间序列预测。
摘要由CSDN通过智能技术生成

 

close all
clear all
clc

%% 导入数据
signal=xlsread('原始信号.csv');
signal=signal(1:900)';
fs=900; % 样本个数
T = length(signal);% 样本长度
t = 1/fs:1/fs:1;
omega_freqs = t-0.5-1/T;
f_hat=fftshift(fft(signal));
%% SVMD
maxAlpha=20000; %compactness of mode
tau=0;%time-step of the dual ascent
tol=1e-6; %tolerance of convergence criterion;
stopc=4;%the type of stopping criteria

智能算法及其模型预测

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能算法及其模型预测

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值