语义分割:FCN和UNet

语义分割:FCN和UNet

学习目标

  • 了解FCN的结构
  • 了解FCN的上采样方法及跳层连接
  • 掌握Unet网络结构

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-vBsMtprx-1646530712259)(笔记图片/image-20201009154312975.png)]

FCN网络

FCN(Fully Convolutional Networks) 用于图像语义分割,自从该网络提出后,就成为语义分割的基本框架,后续算法基本都是在该网络框架中改进而来。

对于一般的分类CNN网络,如VGG和Resnet,都会在网络的最后加入一些全连接层,经过softmax后就可以获得类别概率信息。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ja7U0lnx-1646530712260)(笔记图片/image-20201009160138511.png)]

但是这个概率只能标识整个图片的类别,不能标识每个像素点的类别,所以这种全连接方法不适用于图像分割。

而FCN提出可以把后面几个全连接都换成卷积,这样就可以获得一张2维的feature map,后接softmax获得每个像素点的分类信息,从而解决了分割问题,如下图所示:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-yhOuaKYk-1646530712260)(笔记图片/image-20201009160204953.png)]

简而言之,FCN和CNN的区别就是:CNN卷积层之后连接的是全连接层;FCN卷积层之后仍连接卷积层,输出的是与输入大小相同的特征图。

网络结构

FCN是一个端到端,像素对像素的全卷积网络,用于进行图像的语义分割。整体的网络结构分为两个部分:全卷积部分和上采样部分。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值