论文笔记:Recsys 2019 Style Conditioned Recommendations

文章提出了风格条件推荐(SCR)模型,结合条件变分自动编码器(CVAE)和物品内容数据,以实现推荐系统的风格迁移。通过学习用户对不同类型的偏好,形成可解释的用户配置文件,增强了推荐的个性化。使用标签传播算法从有限的物品标签中学习用户风格,然后在CVAE中应用这些风格进行推荐。实验展示了这种方法在推荐效果上的优势。
摘要由CSDN通过智能技术生成

前言

论文链接:https://arxiv.org/abs/1907.12388
github:暂无

本文提出了一种条件变分自动编码器 Conditional Variational Autoencoder (CVAE) ,其中编码器和解码器的所依赖的用户条件是从物品内容中学习得到的。基于此可以允许模型根据不同类型的推荐任务进行风格迁移,作者将这种功能称为风格注射。为了实现这种操作,需要学习用户对于不同类型的偏好,并将该偏好作为用户配置文件加载进模型中。这种用户偏好是根据标签传播算法从物品内容信息中学习得到的。为了执行注入,编码器的条件是学习的,而解码器的条件是选择每个显式反馈。明确的反馈可以来自用户对风格或兴趣测试的回应,也可以来自物品评级。在没有显式反馈的情况下,编码器的条件应用于解码器。

总结一下此篇文章的主要创新点是利用一种半监督的学习方法扩展物品标签变为可解释的用户配置。

1. Introduction

作者提出的 Style Conditioned Recommendations (SCR) 主要是基于 Variational Autoencoder (VAE)应用于推荐系统的一种扩展 Conditional VAE (CVAE) 。具体来说,基于 VAE 的推荐系统方法使用隐式反馈来完成协同过滤任务。SCR 通过引入从物品内容数据中学习到的 VAE 条件,将内容数据整合到该方法中,将此作为用户的偏好配置。

例如,在电影推荐中,风格可以是浪漫、喜剧、恐怖等,而家具的风格可以是现代、传统等。该模型由两部分组成。第一个是编码器,它接受项内容数据作为输入,将其聚合到用户内容表示中,并推断出用户样式配置文件。SCR 将网络的这一部分称为文本编码器。第二种是CVAE,它利用用户物品交互矩阵和学习到的用户风格配置文件来生成推荐。

总结来说,SCR 也是一种协同过滤方法,本质上都是先学习用户物品的潜在表示,进而生成预测的交互矩阵完成推荐。但是与传统方法不同的是,SCR 引入了物品内容数据来引入新的信息,作者将此称之为用户偏好配置,来更好地完成用户向量的嵌入完成最终的推荐任务。

SCR 通过使用标签传播来加强样式配置文件的可解释性。用户样式配置文件是从项目内容数据中学习的,该数据包含有限的样式标签。通过从用户点击的训练数据集中抽样标记的项,创建一个带有标记样式概要的用户内容表示数据集。结果是一个数据集,它代表用户点击信息,但也带有样式标签。

因此本文的主要贡献是使用 VAEs 到半监督设置的无监督方法的扩展。即通过从有限的一组项目标签中学习可解释的用户风格配置文件并使用CVAE架构来实现这一点。

2. SCR

传统的基于 VAE 的协同过滤
在这里插入图片描述

用户物品交互矩阵表示为 X C ∈ R U × I \mathbf{X}_C \in \mathbb{R}^{U \times I} XCRU×I,其中 U U U I I I 分别代表数据集中用户和物品的数量,编码器学习到的编码结果为 Z C \mathbf{Z}_C ZC,可以看作是用户物品交互矩阵的高维特征表示。之后模型的解码器,通过对 Z C \mathbf{Z}_C ZC 进行解码得到预测的用户物品交互矩阵,根据生成的数据完成推荐。整体模型框架如图所示
在这里插入图片描述
光从两个模型的框架来看,基本一致,不同的地方主要在于 SCR 提出的 style机制也就是 Z T \mathbf{Z}_T ZT 参与的两个部分。

2.1 Text Encoder

这里算是这篇文章主要的创新点,也是核心部分,主要是 Z T \mathbf{Z}_T ZT 的生成,作者将此命名为 text encoder,其架构如图二
在这里插入图片描述
用户的内容表示是通过对与他们交互的物品的内容表示平均值( M T \mathbf{M}_T MT)获得的。项目内容数据可以以任何矢量形式提供,例如物品文本信息的嵌入或者物品图片信息的嵌入。文中作者进行实验的数据集中的物品内容表示是基于文本信息构建的,文本信息包括的物品的名称和物品的属性。在嵌入的过程中首先经过标准的词嵌入处理,例如停留词等预处理,之后经过一个经过预训练的 word2vec 得到物品文本信息的嵌入。

取用户与之互动过的所有物品的平均值,会得到互动次数较多的用户比互动次数较少的用户更平坦的分布。虽然大多数用户很少进行物品交互,但该分布有一个长而重的尾巴,包含了交互次数超过平均次数十倍的用户。这导致分布依赖于平均移动取决于用户浏览历史的长度。为了避免这个问题,SCR 将所有用户都看作是他们已经交互过的固定的少量 k k k 个物品的平均值。这些项在每个历元被随机选择,其中 k < N k \lt N k<N,其中 N N N 是每个用户点击的最小项数。

在这里插入图片描述
算法1总结一下就是根据用户所交互物品的嵌入取平均作为用户的信息表示,所得到的矩阵维度为 U × D U \times D U×D,其中 U U U 就是用户的数量, D D D 就是嵌入的维度。该矩阵 X T \mathbf{X}_T XT 之后被用来作为 text encoder 的输入,经过 text encoder 所得到的输出就是该用户的偏好配置。
在这里插入图片描述

2.2 Shaping User Profiles

用户配置文件可以被创建为可解释的,表明对类型的兴趣。SCR 定义了可解释的用户配置文件,这样,配置文件的潜在空间中的每个维度都指示了用户与特定类型的项交互的概率。在推荐中,这允许以编码方式捕获的用户项首选项的类型转换。

虽然用户在数据集中没有被标记为样式配置文件,但是有些物品有样式标签。这些标签是有限的,只有大约 2% 的物品有可靠的、手动验证的标签。可以利用这些标签通过标签传播算法创建数据集。因此,为了创建大量多样化的训练数据语料库,作者对用户的训练集进行采样,通过点击交互信息来获取所交互的物品嵌入均值 V T \mathbf{V}_T VT。然后用 S \mathbf{S} S 和以 V T \mathbf{V}_T VT训练标签传播模型,将输出作为文本编码器 Z V \mathbf{Z}_V ZV 的输入。为标签传播生成训练数据,进而生成 text encoder 训练数据的算法如下:
在这里插入图片描述

3. Experiments

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值