图像处理之图像质量评价指标SSIM(结构相似性)

本文介绍了结构相似性(SSIM)指标的基本概念及其在Matlab中的两种实现方法:使用开源函数和内置函数ssim()。通过实例展示了如何计算两幅图像间的SSIM值,并对比了不同噪声水平下SSIM的变化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、SSIM基本定义

SSIM全称为“Structural Similarity Index”,中文意思即为结构相似性,是衡量图像质量的指标之一。给定两张图像x和y,其结构相似性可以定义为:

在这里插入图片描述

matlab中对SSIM的文档说明:

SSIM的范围为[0,1],其值越大,表示图像的质量越好。当两张图像一模一样时,此时SSIM=1。计算SSIM有两种方法:

方法一:使用开源结构相似性函数

方法二:直接使用matlab的内置函数ssim()

matlab中对ssim()函数的文档说明:
在这里插入图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值