一、文章摘要
恶意的Deepfakes导致了一场关于区分真脸和伪造脸的激烈冲突。尽管已经制定了许多事后检测Deepfakes的对策,但毫无疑问,在可预见的操作之前,被动取证没有考虑对原始人脸采取任何预防措施。为了完成这个取证生态系统,我们提出了名为SepMark的主动式解决方案,该解决方案为源跟踪和Deepfake检测提供了统一的框架。SepMark源自基于编码器-解码器的深度水印,但具有两个可分离的解码器。SepMark首次提出了深度可分离水印,为已建立的深度水印研究带来了一种新的范式,即单个编码器优雅地嵌入一个水印,而两个解码器可以在不同的鲁棒性水平上分别提取水印。抗各种失真的鲁棒解码器Tracer可能具有过高的鲁棒性,使水印在Deepfake之前和之后都能存活。称为Detector的半鲁棒检测器对恶意失真选择性敏感,使水印在Deepfake之后消失。只有由Tracer和Detector组成的SepMark才能可靠地追踪被标记人脸的可信来源,并检测其自被标记以来是否发生了更改;两者都无法单独做到这一点。大量实验证明了所提出的SepMark在典型Deepfakes上的有效性,包括人脸交换、表情重现和属性编辑。代码将在https://github.com/sh1newu/SepMark。
二、文章提出的方法</