数据降维的发展历程

数据降维是指通过某种方式减少数据的维度,同时保留其重要信息。这个过程可以有助于降低计算成本、减少存储空间、避免维度灾难,同时可能有助于改善模型的性能。以下是数据降维的主要发展历程:

  1. 主成分分析(PCA):

    • 时间: 1901年由卡尔·皮尔逊提出。
    • 方法: PCA是一种线性降维技术,通过找到数据中的主成分(方差最大的方向)来减少维度。通过投影数据到这些主成分上,可以实现数据降维。
  2. 多维尺度分析(MDS):

    • 时间: 1964年由Torgerson和Gower提出。
    • 方法: MDS旨在保持数据点之间的距离信息。它通过在降维空间中表示数据点,使得它们之间的距离在降维前后尽可能保持一致。
  3. 自编码器(Autoencoder):

    • 时间: 1985年由Rumelhart等人提出。
    • 方法: 自编码器是一种神经网络结构,包括编码器和解码器。它通过学习数据的压缩表示来实现降维。编码器将输入映射到低维表示,解码器将其重构回原始维度。
  4. 局部线性嵌入(LLE):

    • 时间: 2000年由Roweis和Saul提出。
    • 方法: LLE是一种非线性降维技术,旨在保持邻域内数据点的局部线性结构。它通过在降维空间中表示数据点,并保持它们之间的局部线性关系来实现降维。
  5. t-分布随机邻域嵌入(t-SNE):

    • 时间: 2008年由Hinton和Van der Maaten提出。
    • 方法: t-SNE是一种用于可视化高维数据的非线性降维技术。它通过在降维空间中表示数据点,并试图保持高维空间中数据点之间的相似性关系。
  6. UMAP(Uniform Manifold Approximation and Projection):

    • 时间: 2018年由McInnes、Healy和Melville提出。
    • 方法: UMAP是一种近似于t-SNE的非线性降维技术,具有更高的可扩展性和更好的保持全局结构的能力。

这些方法代表了数据降维领域的主要进展,从早期的线性方法到后来的非线性方法,以及基于神经网络的方法。选择合适的降维方法通常取决于数据的性质和任务的需求。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值