

🌈个人主页: 鑫宝Code
🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础
💫个人格言: "如无必要,勿增实体"
文章目录
Grid Search: 一种系统性的超参数优化方法
引言
在机器学习领域,模型的性能往往取决于一系列可调参数的选择,这些参数被称为“超参数”。与模型权重不同,超参数不能从数据中直接学习得到,而是需要人为设定。超参数的选择对模型最终的表现有着至关重要的影响,因此寻找最佳超参数组合是机器学习项目中的一个关键步骤。本文将详细介绍Grid Search(网格搜索)这一超参数优化技术。
什么是Grid Search?
Grid Search是一种用于自动搜索给定超参数空间中最佳模型参数组合的方法。它通过创建一个包含所有待评估超参数值的网格,然后遍历这个网格中的每一个点来完成搜索过程。对于每个网格点,即超参数的一个特定组合,Grid Search会训练模型并评估其性能,最后选择性能最优的那个组合作为最佳超参数设置。
Grid Search的工作流程
1. 定义超参数范围
首先,需要为每个超参数定义一个候选值的列表或区间。例如,如果我们要调整决策树的深度和最小样本分割数,我们可以定义如下:
- 决策树深度:[3, 5, 7, 9]
- 最小样本分割数:[2, 5, 10]
2. 创建超参数网格
基于上述定义,可以创建一个超参数网格,其中包含所有可能的超参数组合。在这个例子中,我们有:
决策树深度 | 最小样本分割数 |
---|---|
3 | 2 |
3 | 5 |
3 | 10 |
5 | 2 |
5 | 5 |
5 | 10 |
7 | 2 |
7 | 5 |
7 | 10 |
9 | 2 |
9 | 5 |
9 |