如何用YOLOv8-seg实现人体部位解析分割,包含教程和代码

数据集收集

在这里插入图片描述
  人体部位解析任务是一项计算机视觉领域的重要研究课题,其目标是通过图像处理和机器学习算法来识别和定位人体图像中的各个部位。这项任务在医疗诊断、人体姿态估计、虚拟试衣、安防监控等多个领域具有广泛的应用前景。
  在医疗领域,通过精确解析人体部位,医生可以更高效地进行诊断和治疗。例如,自动识别和标记X光片中的骨骼部位,有助于快速发现骨折或其他异常情况。在运动与康复中,人体部位解析可以用于监控运动员的姿态和动作,提供科学的训练建议,减少运动伤害的发生。
  在技术实现方面,人体部位解析通常依赖于深度学习算法,特别是卷积神经网络(CNN)。这些算法通过大规模的训练数据进行学习,能够识别图像中的复杂特征。为了提高精度和鲁棒性,研究人员常结合多种技术手段,如多尺度特征提取、人体模型拟合以及姿态估计等。
  此外,随着三维成像技术的发展,三维人体部位解析也成为一个研究热点。通过利用深度相机或多视角摄像头获取的三维数据,解析算法能够提供更加精确和全面的解析结果。
  总的来说,人体部位解析任务的研究不仅推动了计算机视觉技术的发展,也为多个应用领域带来了新的可能性和解决方案。随着技术的不断进步和数据资源的丰富,相信这项技术将在未来发挥更加重要的作用。

1. LV-MHP-v1

单人人体解析。MHP v1.0包括4980张图片,平均每张图包括3人,训练集3000张,验证集1000张,测试集980张,共标注19个类别:“background”, “hat”, “hair”, “sunglasses”, “upper clothes”, “skirt”, “pants”, “dress”, “belt”, “left shoe”, “right shoe”, “face”, “left leg”, “right leg”, “left arm”, “right arm”, “bag”, “scarf” and “torso skin”,如下图所示:
在这里插入图片描述

import cv2
import numpy as np
import os
import tqdm
def save_yolo_format(yolo_path, class_id, contours, img_shape):
    with open(yolo_path, 'a') as f:
        for contour in contours:
            contour = contour.squeeze()  # Remove unnecessary dimensions
            if contour.ndim == 1:
                continue  # Skip degenerate contours
            # Normalize coordinates
            normalized_contour = contour / [img_shape[1], img_shape[0]]
            normalized_contour = normalized_contour.flatten()
            # Format as YOLO: class_id followed by normalized coordinates
            line = f"{
     class_id} " + " ".join(map(str, normalized_contour)) + "\n"
            f.write(line)

def visualize_semantic_segmentation(png_path, vis_path, yolo_path):
    # 读取语义分割标注图像
    img = cv2.imread(png_path, cv2.IMREAD_GRAYSCALE)
    h, w = img.shape

    # 创建一个彩色图像以进行可视化
    vis_img = np.zeros((h, w, 3), dtype=np.uint8)

    # 获取图像中的所有唯一像素值(类别)
    unique_labels = np.unique(img)

    # 定义一个颜色表用于可视化不同类别
    np.random.seed(42)  # 固定种子以便颜色一致
    colors = {
   label: np.random.randint(0, 255, 3).tolist() for label in unique_labels}

    for class_id in unique_labels:
        if class_id == 0:
            continue  # 忽略背景类

        # 创建一个掩码,标记当前类别
        mask = (img == class_id).astype(np.uint8)

        # 找到当前类别的所有轮廓
        contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

        # 在可视化图像上绘制轮廓
        cv2.drawContours(vis_img, contours, -1, colors[class_id], thickness=2)

        # 保存轮廓点到YOLO格式文件
        save_yolo_format(yolo_path, class_id, contours, img.shape)

    # 保存可视化结果
    cv2.imwrite(vis_path, vis_img)

    # 显示可视化结果
    # cv2.imshow('Semantic Segmentation Visualization', vis_img)
    # cv2.waitKey(1)
    # cv2.destroyAllWindows()

# 使用示例
if __name__ == "__main__":
    import multiprocessing
    import os
    import
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一休哥※

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值