【信号与系统】3. 阶跃函数、冲激函数

  • 阶跃函数、冲激函数均属于奇异函数
    (奇异函数是指函数本身有不连续点或其导数或积分有不连续点的一类函数)

【 1. 阶跃函数 】

1. 单位阶跃函数

将 yn(t)的 n→ ∞ 得到 ε(t)。
在这里插入图片描述在这里插入图片描述

2. 延迟单位阶跃函数

在这里插入图片描述
在这里插入图片描述 在这里插入图片描述

3. 阶跃函数的性质

(1)表示某些信号
在这里插入图片描述
(2)表示信号的作用区间
在这里插入图片描述
(3)积分
在这里插入图片描述
相当于对(-∞,t)区间内ε(t)与直线x=t、x轴包围图形的面积。

【 2. 单位冲激函数 】

对强度极大,作用时间极短的一种物理量的理想化模型。

1. 狄拉克定义

  • 函数值只在 t=0 时不为 0 。
  • 积分面积为1。
  • t=0 时,δ(t)→ ∞ ,为无界函数。

在这里插入图片描述

2. 函数序列定义 δ(t)

  • 对 γ(t) 求导得到 pn(t) ,将 pn(t) 的 n→ ∞ 得到 δ(t) 。

δ(t) 为高度无穷大,宽度无穷小,面积为1的对称窄脉冲。
在这里插入图片描述

3. δ(t) 和 ε(t) 的关系

  • 呈导数积分的关系:
    在这里插入图片描述在这里插入图片描述

4. 引入冲激函数后,间断点的导数也存在

在这里插入图片描述

5. 冲激函数的性质

(1)取样性(筛选性)

  • 若 f(t) 在 t=0 处连续,且处处有界,则有
    在这里插入图片描述在这里插入图片描述
  • 证明:
    在这里插入图片描述
  • 例:
    在这里插入图片描述

(2)冲激偶

对冲激函数求导所得。
在这里插入图片描述 在这里插入图片描述

  • 冲激偶的性质
    在这里插入图片描述

(3)对δ(t)的尺度变换

在这里插入图片描述

  • 例:
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

(4)复合函数形式的冲激函数

在这里插入图片描述

  • 例:
    在这里插入图片描述

(5)冲激函数性质总结

在这里插入图片描述在这里插入图片描述

【 3. 总结 】

阶跃函数表示信号作用区间的形式
公式:阶跃函数的积分性质
冲激函数t=0时的值
冲激函数与脉冲的关系
δ(t) 和 ε(t) 的转化关系
公式:冲激函数取样性(2)、冲激偶(6)、比例性(1)、奇偶性(1)、微积分性质(2)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MR_Promethus

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值