【CVPR2022】Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity

频率驱动的语义相似度不可见对抗性攻击

在这里插入图片描述
通过特征相似度优化扰动,约束对抗样本的低频图像和正常样本的低频图像之间的相似度,将扰动限制在高频信息内。

背景

传统对抗攻击方法的问题:
1.攻击域和训练域相同。而现实中可能攻击域不在分类模型的标签域中。(所以使用的特征攻击)
2.使用范数不足以评估图像感知相似性。(从代码中看的,使用的torch.nn.SmoothL1Loss(reduction=‘sum’))

方案

这篇文章使用优化算法生成对抗样本

实验设计

总损失函数:
在这里插入图片描述

一、特征相似度损失
使用余弦相似度计算特征相似度(我看代码里边使用的点乘相似度,两种方法差别不大,相似度值越大越相似),让对抗样本的特征转向错误图像。
在这里插入图片描述

sii=torch.matmul(xi, advi.T)  #特征点乘
mask = torch.eye(xi.shape[0], dtype=torch.bool).to(self.device)
sii= sii[mask].view(xi.shape[0], -1)   #一个batch中x与adv对应的两个特征相乘
torch.max(sii-sij,0)

为了避免冗余扰动,设计了一种自步长加权方案来提高优化的灵活性。可以调整每个相似度分数的优化速度。接近其最优的相似度得分被分配了一个较小的梯度,而较少优化的相似度得分被分配了一个较大的梯度。在这里插入图片描述
在这里插入图片描述
二、低频约束
低频图像之间的相似度,就是这里使用的
在这里插入图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值