模型轻量化中的模型剪枝(Pruning)方法——权重剪枝详解
目录
- 简介
- 权重剪枝的基本概念
- 权重剪枝的数学基础
- 权重剪枝的步骤
- 权重剪枝的方法
- 5.1 全局剪枝 vs 层级剪枝
- 5.2 非结构化剪枝 vs 结构化剪枝
- 权重剪枝的优缺点
- 权重剪枝的应用实例
- 代码示例
- 8.1 代码说明
- 总结
简介
在深度学习模型中,尤其是深层神经网络,模型参数数量庞大,导致模型在存储和计算上的需求较高。模型剪枝(Pruning)是一种有效的模型轻量化技术,通过减少模型中的冗余参数,从而降低模型的复杂度,提高运行效率。权重剪枝是模型剪枝的一种主要方法,主要通过移除神经网络中的不重要权重来实现模型的压缩。
权重剪枝的基本概念
权重剪枝是指在神经网络中识别并移除那些对最终输出影响较小的权重参数。这些被剪除的权重通常被认为是冗余的或不重要的。剪枝后的模型具有更少的参数,因而在存储和计算上更加高效,同时尽可能保持原有的性能。
权重剪枝的数学基础
假设一个神经网络的某一层有权重矩阵 W ∈ R m × n W \in \mathbb{R}^{m \times n} W∈Rm×n,权重剪枝的目标是找到一个掩码矩阵 M ∈ { 0 , 1 } m × n M \in \{0,1\}^{m \times n} M∈{ 0,1}m×n,使得剪枝后的权重矩阵 W ′ = W ⊙ M W' = W \odot M W′=W⊙M (其中 ⊙ \odot ⊙ 表示元素级乘法)满足以下条件:
min M ∥ W − W ′ ∥ F