大语言模型——少样本与零样本的思维链提示(Few-Shot & Zero-Shot CoT Prompting)详解

引言

在大语言模型(Large Language Model, LLM)中,“思维链”提示(Chain of Thought Prompting,CoT)指的是让模型显式产出中间推理步骤,帮助其在回答复杂问题时更可靠、更具可解释性。根据是否在提示中提供示例来演示“如何写出思维链”,CoT可分为:

  • 少样本思维链提示(Few-Shot CoT Prompting):在提示中包含若干带有思维链的示例。
  • 零样本思维链提示(Zero-Shot CoT Prompting):仅用文字指令“要求模型给出思维过程”,不提供具体思维链示例。

二者都旨在提高大语言模型的推理质量。本文将结合更多数学公式,深入剖析Few-Shot与Zero-Shot CoT的核心原理与实现方式。


思维链(Chain of Thought, CoT)简述

思维链(CoT)可以理解为一条从问题 Q Q Q 到答案 A A A 的显式“推理路径”。在生成式语言模型中,若我们让模型在输出最终答案前,先写出一段(或多段)文本来阐明它的思考过程(例如逻辑、计算步骤等),就能显著减少“跳步”或错误回答,并且为人类用户提供可解释的中间结论。

在数学上,可将思维链 C C C 视为问题 Q Q Q 与答案 A A A 之间的某个中间(或辅助)变量。当我们只看最终答案时,模型实际上暗含了一个对 C C C 的内部推理;而当我们使用CoT提示时,就让这个内部推理在最终输出中得以显式呈现。


少样本思维链提示(Few-Shot CoT Prompting)

定义与动机

  • 少样本(Few-Shot):在给模型的提示(Prompt)里,先提供少量“带有思维链的示例”作为范例,然后再提出新的问题,期望模型按类似形式输出“思维链 + 答案”。
  • 动机
    1. 示范学习(in-context learning):大模型会从提示示例中“模仿”如何先写出推理过程,再得出结论;
    2. 复杂任务的可解释性:某些任务(如数学题、逻辑推断)需要多步推理;示例能让模型更轻松地抓住如何分步思考;
    3. 减少幻觉与错误:拥有思维链示例后,模型更倾向于“循迹”而不是无中生有地跳到答案。

数学模型

在Few-Shot场景下,假设我们给模型提供了 k k k 个示例,记为
{ ( Q 1 , C 1 , A 1 ) ,   ( Q 2 , C 2 , A 2 ) , … , ( Q k , C k , A k ) } , \Bigl\{(Q_1, C_1, A_1),\, (Q_2, C_2, A_2), \dots, (Q_k, C_k, A_k)\Bigr\}, { (Q1,C1,A1),(Q2,C2,A2),,(Qk,Ck,Ak)},
并且我们还有一个新问题 Q new Q_{\text{new}} Qnew,要求模型输出
Y new = ( C new , A new ) . Y_{\text{new}} = (C_{\text{new}}, A_{\text{new}}). Ynew=(Cnew,Anew).
这里:

  • Q i Q_i
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DuHz

喜欢就支持一下 ~ 谢谢啦!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值