揭秘In-Context Learning(ICL):大型语言模型如何通过上下文学习实现少样本高效推理[示例设计、ICL机制详解]

揭秘In-Context Learning(ICL):大型语言模型如何通过上下文学习实现少样本高效推理[示例设计、ICL机制详解]

自GPT-3首次提出了In-Context Learning(ICL)的概念而来,ICL目前已经变成了一种经典的LLMs使用方法。ICL,即In-Context Learning,是一种让大型语言模型(LLMs)通过少量标注样本在特定任务上进行学习的方法。这种方法的核心思想是,通过设计任务相关的指令形成提示模板,利用少量标注样本作为提示,引导模型在新的测试数据上生成预测结果。

  • ICL主要思路是:给出少量的标注样本,设计任务相关的指令形成提示模板,用于指导待测试样本生成相应的结果。

  • ICL的过程:并不涉及到梯度的更新,因为整个过程不属于fine-tuning范畴。而是将一些带有标签的样本拼接起来,作为prompt的一部分,引导模型在新的测试数据输入上生成预测结果。

  • ICL方法:表现大幅度超越了Zero-Shot-Learning,为少样本学习提供了新的研究思路。

1.ICL定义

1.1 形式化定义

给出少量任务相关的模型输入输出示例(demon

### 大型语言模型上下文学习ICL)训练和推理方法 #### 上下文学习概述 上下文学习是一种无需额外参数更新即可使大型语言模型适应新任务的技术。这种方法利用少量示范样例作为提示,帮助模型理解和完成特定的任务[^2]。 #### ICL的工作原理 在上下文学习过程中,输入给模型的数据不仅包含待处理的新样本,还包含了若干已经标注好的示例。这些已知的例子被用来构建一个自然语言形式化的指导说明,使得LLM能够依据此模式推断并生成对于未知实例的回答。由于这种机制不涉及权重调整或反向传播过程,所以可以快速部署至不同应用场景中去[^3]。 #### 训练阶段特点 尽管被称为“无监督”,但实际上,在预训练阶段,大规模的语言建模任务本身就已经赋予了模型丰富的背景知识。当涉及到具体的下游应用时,则不再需要传统的微调流程;相反,只需提供恰当构造的前缀文本就能激活相应的功能模块。这意味着执行任何新的分类、问答或其他类型的NLP子领域工作都变得异常简便高效[^1]。 #### 推理阶段操作指南 为了实现有效的上下文学习效果,设计良好的提示至关重要。理想情况下,应该精心挑选那些最能代表目标任务特征的案例加入到前置序列里,并确保它们按照一定逻辑顺序排列以便于理解。此外,还可以尝试改变问题表述方式或者增加辅助信息来优化最终输出质量。下面给出一段Python代码用于模拟如何设置这样的环境: ```python def setup_in_context_learning(model, examples, new_example): prompt = "" # 添加已有示例形成上下文 for example in examples: prompt += f"Input: {example['input']}\nOutput: {example['output']}\n\n" # 加入需预测的新实例 prompt += f"Input: {new_example}" return model.generate(prompt) # 假设有一个名为model的对象表示我们的大模型 examples = [ {"input": "What is 2+2?", "output": "The answer is 4."}, {"input": "Who wrote 'Romeo and Juliet'?", "output": "It was written by William Shakespeare."} ] print(setup_in_context_learning(model, examples, "How many sides does a triangle have?")) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

汀、人工智能

十分感谢您的支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值