模拟:凑一手牌,求牌型方案数。c++

模拟类型题

有 A × B 张扑克牌。每张扑克牌有一个大小(整数,记为a,范围区间是 0 到 A - 1)和一个花色(整数,记为b,范围区间是 0 到 B - 1)

扑克牌是互异的,也就是独一无二的,也就是说没有两张牌大小和花色都相同。

“一手牌”的意思是你手里有5张不同的牌,这 5 张牌没有谁在前谁在后的顺序之分,它们可以形成一个牌型。 我们定义了 9 种牌型,如下是 9 种牌型的规则,我们用 “低序号优先” 来匹配牌型,即这“一手牌”从上到下满足的第一个牌型规则就是它的“牌型编号”(一个整数,属于1到9):

  1. 同花顺: 同时满足规则 5 和规则 4.
  2. 炸弹 : 5张牌其中有4张牌的大小相等.
  3. 三带二 : 5张牌其中有3张牌的大小相等,且另外2张牌的大小也相等.
  4. 同花 : 5张牌都是相同花色的.
  5. 顺子 : 5张牌的大小形如 x, x + 1, x + 2, x + 3, x + 4
  6. 三条: 5张牌其中有3张牌的大小相等.
  7. 两对: 5张牌其中有2张牌的大小相等,且另外3张牌中2张牌的大小相等.
  8. 一对: 5张牌其中有2张牌的大小相等.
  9. 要不起: 这手牌不满足上述的牌型中任意一个.

首先从A × B 张扑克牌中拿走 2 张牌!分别是 (a1, b1) 和 (a2, b2). (其中a表示大小,b表示花色)

现在要从剩下的扑克牌中再随机拿出 3 张!组成一手牌!!

现在需要预言他的未来的可能性,即他将拿到的“一手牌”的可能性,我们用一个“牌型编号(一个整数,属于1到9)”来表示这手牌的牌型,那么他的未来有 9 种可能,但每种可能的方案数不一样,需要计算 9 种牌型中,每种牌型的方案数

输入第 1 行包含了整数 A 和 B (5 ≤ A ≤ 25, 1 ≤ B ≤ 4).
第 2 行包含了整数 a1, b1, a2, b2 (0 ≤ a1, a2 ≤ A - 1, 0 ≤ b1, b2 ≤ B - 1, (a1, b1) ≠ (a2, b2))

输出一行,这行有 9 个整数,每个整数代表了 9 种牌型的方案数(按牌型编号从小到大的顺序)

sample input:
5 2
1 0 3 1

sample output:
0 0 0 0 8 0 12 36 0

sample input:
25 4
0 0 24 3

sample output:
0 2 18 0 0 644 1656 36432 113344

思路:

  • 首先,看到每张扑克有两个属性,花色和牌面大小,就需要先定义结构体,因为这里都是用数字表示的,所以两个属性都使用int型对待
  • 创建一个结果数组用来存放最终会有多少的对应位置答案出现
  • 首先,1号和2号牌是给定的,要求我们最终在手里拿到5张牌进行凑牌,所以我们需要找出剩下三张牌可能的排列组合情况
  • 因为根据题目给出的数据范围,最大的牌数也就是25*4=100,完全可以进行暴力遍历,所以直接利用三个循环来枚举所有可能出现的牌面情况,注意题面中提到,所有的扑克牌都是不同的,所以在进行枚举的时候一定要排除掉已经出现了的牌1和牌2,并且保证三张牌互不相同
  • 得到了当前遍历结果中的牌3-5的花色和牌面大小后,就要对牌面进行查看,观察牌面到底属于哪一类牌型。由于牌型值越小说明优先级越高,所以我们基本按照优先级的顺序进行判断。
  • 为了更好的进行判断,首先对得到的五张牌面进行排列,这样的话如果牌1的大小等于牌3的大小其实就相当于牌1== 牌2==牌3,可以节省一些判断条件
  • 需要注意的点是,我们对五张牌进行了排序操作,所以现在的牌1不是牌1,你说的牌2又是什么牌2…一定要在判断结束之后给牌1牌2重新初始化赋值,否则就会一直出奇奇怪怪的结果(没错,我就是亲身踩坑人)
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
struct poker
{
 int num, flower;
 bool operator <(const poker &m)const
 {
  if(num!=m.num)
   return num<m.num;
  else if(flower!=m.flower)
   return flower<m.flower;
 }
}card[60];
int ans[101];
int a,b,a1,a2,b1,b2;
int main()
{ cin>>a>>b;
 cin>>a1>>b1>>a2>>b2;
 card[1].num=a1;
 card[1].flower=b1;
 card[2].num=a2;
 card[2].flower=b2;
 int cc=0;
 for(int i=0;i<a*b;i++)
 { 
  if(!(i/b==a1&&i%b==b1)&&!(i/b==a2&&i%b==b2))
  {
   for(int j=i+1;j<a*b;j++)
  {
   if(!(j/b==a1&&j%b==b1)&&!(j/b==a2&&j%b==b2))
   {
    for(int k=j+1;k<a*b;k++)
    { 
   if((k/b==a1&&k%b==b1)||(k/b==a2&&k%b==b2))continue;
    card[3].num=i/b;
    card[3].flower=i%b;
    card[4].num=j/b;
    card[4].flower=j%b;
    card[5].num=k/b;
    card[5].flower=k%b;
    sort(card+1,card+6); 
    bool flag1=true,flag2=true;
   for(int u=2;u<=5;u++)
   { 
    if(card[u].num!=card[u-1].num+1)//顺子5 
     flag1=false;
    if(card[u].flower!=card[u-1].flower)//同花4 
     flag2=false;
   } 
   if(flag1&&flag2) ans[1]++;//同时满足规则四五 
   else if(flag1) ans[5]++;
   else if(flag2) ans[4]++;
   //炸弹,四个一样 
   else if(card[1].num==card[4].num||card[2].num==card[5].num) ans[2]++;
   //排序后,三代二3 ,前三个相等或者后三个相等 
   else if((card[1].num==card[3].num&&card[4].num==card[5].num)||(card[1].num==card[2].num&&card[3].num==card[5].num))ans[3]++;
   //两对7 
   else if((card[1].num==card[2].num&&card[3].num==card[4].num)||(card[1].num==card[2].num&&card[4].num==card[5].num)||(card[2].num==card[3].num&&card[4].num==card[5].num))ans[7]++;
   //三条 
   else if(card[1].num==card[3].num||card[2].num==card[4].num||card[5].num==card[3].num)ans[6]++;
   //一对 
   else if(card[1].num==card[2].num||card[2].num==card[3].num||card[3].num==card[4].num||card[4].num==card[5].num)ans[8]++;
   else ans[9]++;
   //一定不要忘记初始化 
   card[/1].num=a1;
   card[1].flower=b1;
   card[2].num=a2;
   card[2].flower=b2; 
  } 
 }
} 
}
}
 for(int i=1;i<=9;i++)
 {
  cout<<ans[i]<<" ";
 }
 return 0;
}

这道题也可以用数学中排列组合的方式来解决,大概思路就是利用给定的a,b,a1,a2,b1,b2来推导最终如果是该种情况,那根据现在的手牌能有几种可能性出现,感觉和直接推导的思路方向是相反的

void getChance4(){//四张牌都一样的大小 
 if(B==4){
   if(a1!=a2) S[3]=2;
   else S[3]=A-1;
 }  
}
void getChance5(){
 if(B>2){
 if(a1==a2) 
  S[4]=(B-2)*(A-1)*B*(B-1)/2 + (A-1)*B*(B-1)*(B-2)/6; 
 else 
  S[4]=(B-1)*(B-2)*(B-1); 
 }
}
void getChance6(){
 if(B>1){
   if(a1==a2){
  S[5]=(A-1)*(A-2)*B*B*(B-1)/2;
  }
   else{
  S[5]=(A-2)*B*(B-1)*(B-1)*2;
   }
 }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值