特征工程(八)特征工程案例分析(2)—利用逻辑回归预测泰坦尼克号生存率

泰坦尼克号将乘客分为一等舱、二等舱、三等舱三个等级,等级不同决定了安全设施、娱乐设施、餐饮等的不同,对生存率有一定影响。
那是个绅士的年代,船难时,很多男士放弃逃生机会优先女士孩子逃生,然后慷慨赴死,性别年龄也是影响生存率的因素之一。 
根据背景初步判断船舱等级、乘客年龄、性别是影响生存率的因素。

一些人比其他人更有可能生存,比如妇女,儿童和上层阶级。什么样的人在泰坦尼克号中更容易存活?

下载数据地址如下:
https://www.kaggle.com/competitions/titanic/data

1、导入数据

import warnings
warnings.filterwarnings('ignore')

# 导入处理数据包
import numpy as np
import pandas as pd
# 导入数据
train_data = pd.read_csv("./titanic_data/train.csv")
test_data = pd.read_csv("./titanic_data/test.csv")

print('训练数据集:',train_data.shape,'测试数据集:',test_data.shape)
训练数据集: (891, 12) 测试数据集: (418, 11)
# 合并数据集,方便同时对两个数据集进行清洗
full_data = train_data.append(test_data,ignore_index=True)
print('合并后的数据集:',full_data.shape)
合并后的数据集: (1309, 12)

2、查看数据集的信息

# 查看数据
full_data.head()
PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
010.03Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
121.01Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
231.03Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
341.01Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
450.03Allen, Mr. William Henrymale35.0003734508.0500NaNS
# 获取数据类型列的描述性统计信息
full_data.describe()
PassengerIdSurvivedPclassAgeSibSpParchFare
count1309.000000891.0000001309.0000001046.0000001309.0000001309.0000001308.000000
mean655.0000000.3838382.29488229.8811380.4988540.38502733.295479
std378.0200610.4865920.83783614.4134931.0416580.86556051.758668
min1.0000000.0000001.0000000.1700000.0000000.0000000.000000
25%328.0000000.0000002.00000021.0000000.0000000.0000007.895800
50%655.0000000.0000003.00000028.0000000.0000000.00000014.454200
75%982.0000001.0000003.00000039.0000001.0000000.00000031.275000
max1309.0000001.0000003.00000080.0000008.0000009.000000512.329200

describe只能查看数据类型的描述统计信息,对于其他类型的数据不显示,比如字符串类型姓名(name),客舱号(Cabin)。
这很好理解,因为描述统计指标是计算数值,所以需要该列的数据类型是数据

# 查看每一列的数据类型和数据总数
full_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1309 entries, 0 to 1308
Data columns (total 12 columns):
 #   Column       Non-Null Count  Dtype  
---  ------       --------------  -----  
 0   PassengerId  1309 non-null   int64  
 1   Survived     891 non-null    float64
 2   Pclass       1309 non-null   int64  
 3   Name         1309 non-null   object 
 4   Sex          1309 non-null   object 
 5   Age          1046 non-null   float64
 6   SibSp        1309 non-null   int64  
 7   Parch        1309 non-null   int64  
 8   Ticket       1309 non-null   object 
 9   Fare         1308 non-null   float64
 10  Cabin        295 non-null    object 
 11  Embarked     1307 non-null   object 
dtypes: float64(3), int64(4), object(5)
memory usage: 122.8+ KB

我们发现数据总共有1309行。

其中数据类型列:年龄(Age)、船舱号(Cabin)里面有缺失数据:

  • 1)年龄(Age)里面数据总数是1046条,缺失了1309-1046=263,缺失率263/1309=20%

  • 2)船票价格(Fare)里面数据总数是1308条,缺失了1条数据

字符串列:

  • 1)登船港口(Embarked)里面数据总数是1307,只缺失了2条数据,缺失比较少

  • 2)船舱号(Cabin)里面数据总数是295,缺失了1309-295=1014,缺失率=1014/1309=77.5%,缺失比较大

这为我们下一步数据清洗指明了方向,只有知道哪些数据缺失数据,我们才能有针对性的处理。

3.数据清洗(Data Preparation )

3.1 数据预处理

缺失值处理:

在前面,理解数据阶段,我们发现数据总共有1309行。

  • 其中数据类型列:年龄(Age)、船票价格(Fare)里面有缺失数据。
  • 字符串列:登船港口(Embarked)、船舱号(Cabin)里面有缺失数据。

这为我们下一步数据清洗指明了方向,只有知道哪些数据缺失数据,我们才能有针对性的处理。很多机器学习算法为了训练模型,要求所传入的特征中不能有空值。

  • 如果是数值类型,用平均值取代
  • 如果是分类数据,用最常见的类别取代
  • 使用模型预测缺失值,例如:K-NN
# 1、对于数值类型年龄(Age)和船票价格(Fare)这两列数值类型,我们用平均值进行填充
full_data['Age'] = full_data['Age'].fillna(full_data['Age'].mean())

full_data['Fare'] = full_data['Fare'].fillna(full_data['Fare'].mean())

# 可以看到Age列和Fare列已经没有空值了
full_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1309 entries, 0 to 1308
Data columns (total 12 columns):
 #   Column       Non-Null Count  Dtype  
---  ------       --------------  -----  
 0   PassengerId  1309 non-null   int64  
 1   Survived     891 non-null    float64
 2   Pclass       1309 non-null   int64  
 3   Name         1309 non-null   object 
 4   Sex          1309 non-null   object 
 5   Age          1309 non-null   float64
 6   SibSp        1309 non-null   int64  
 7   Parch        1309 non-null   int64  
 8   Ticket       1309 non-null   object 
 9   Fare         1309 non-null   float64
 10  Cabin        295 non-null    object 
 11  Embarked     1307 non-null   object 
dtypes: float64(3), int64(4), object(5)
memory usage: 122.8+ KB
# 2、填充登船港口(Embarked) 这一列
'''
出发地点:  S=英国   南安普顿  Southampton
途径地点1: C=法国   瑟堡市    Cherbourg
途径地点2: Q=爱尔兰 昆士敦    Queenstown
'''
# 可以看到S类别是最常见的,我们将缺失值填充为最频繁出现的
full_data['Embarked'].value_counts()
S    914
C    270
Q    123
Name: Embarked, dtype: int64
# 将缺失值填充为最频繁出现的S
full_data['Embarked'] = full_data['Embarked'].fillna('S')

# 可以看到Embarked列已经没有空值了
full_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1309 entries, 0 to 1308
Data columns (total 12 columns):
 #   Column       Non-Null Count  Dtype  
---  ------       --------------  -----  
 0   PassengerId  1309 non-null   int64  
 1   Survived     891 non-null    float64
 2   Pclass       1309 non-null   int64  
 3   Name         1309 non-null   object 
 4   Sex          1309 non-null   object 
 5   Age          1309 non-null   float64
 6   SibSp        1309 non-null   int64  
 7   Parch        1309 non-null   int64  
 8   Ticket       1309 non-null   object 
 9   Fare         1309 non-null   float64
 10  Cabin        295 non-null    object 
 11  Embarked     1309 non-null   object 
dtypes: float64(3), int64(4), object(5)
memory usage: 122.8+ KB
# 3、填充船舱号(Cabin) 这一列
full_data['Cabin'].value_counts()

C23 C25 C27        6
G6                 5
B57 B59 B63 B66    5
C22 C26            4
F33                4
                  ..
A14                1
E63                1
E12                1
E38                1
C105               1
Name: Cabin, Length: 186, dtype: int64
# 缺失值比较多,填充为U,表示未知(unknown)
full_data['Cabin'] = full_data['Cabin'].fillna('U')


# 可以看到所有列已经没有空值了,Survived这一列是标签列,不需要进行处理
full_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1309 entries, 0 to 1308
Data columns (total 12 columns):
 #   Column       Non-Null Count  Dtype  
---  ------       --------------  -----  
 0   PassengerId  1309 non-null   int64  
 1   Survived     891 non-null    float64
 2   Pclass       1309 non-null   int64  
 3   Name         1309 non-null   object 
 4   Sex          1309 non-null   object 
 5   Age          1309 non-null   float64
 6   SibSp        1309 non-null   int64  
 7   Parch        1309 non-null   int64  
 8   Ticket       1309 non-null   object 
 9   Fare         1309 non-null   float64
 10  Cabin        1309 non-null   object 
 11  Embarked     1309 non-null   object 
dtypes: float64(3), int64(4), object(5)
memory usage: 122.8+ KB
# 查看数据是否正常
full_data.head()
PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
010.03Braund, Mr. Owen Harrismale22.010A/5 211717.2500US
121.01Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
231.03Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250US
341.01Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
450.03Allen, Mr. William Henrymale35.0003734508.0500US

3.2 特征提取

查看数据类型,分为3种数据类型。并对类别数据处理:用数值代替类别,并进行One-hot编码

(1)数值类型:
乘客编号(PassengerId),年龄(Age),船票价格(Fare),同代直系亲属人数(SibSp),不同代直系亲属人数(Parch)

(2)时间序列:无
(3) 分类数据:

  • 1)有直接类别的

      乘客性别(Sex):男性male,女性female
      登船港口(Embarked):出发地点S=英国南安普顿Southampton,途径地点1:C=法国 瑟堡市Cherbourg,出发地点2:Q=爱尔兰 昆士敦Queenstown
      客舱等级(Pclass):1=1等舱,2=2等舱,3=3等舱
    
  • 2)字符串类型:可能从这里面提取出特征来,也归到分类数据中

      乘客姓名(Name)
      客舱号(Cabin)
      船票编号(Ticket)
    
3.2.1 直接类别的分类数据
# 1、将性别值映射为数值,男(male)对应数值1,女(female)对应数值0
sex_dict = {
    'male':1,
    'female':0
}

full_data['Sex'] = full_data['Sex'].map(sex_dict)
full_data.head()
PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
010.03Braund, Mr. Owen Harris122.010A/5 211717.2500US
121.01Cumings, Mrs. John Bradley (Florence Briggs Th...038.010PC 1759971.2833C85C
231.03Heikkinen, Miss. Laina026.000STON/O2. 31012827.9250US
341.01Futrelle, Mrs. Jacques Heath (Lily May Peel)035.01011380353.1000C123S
450.03Allen, Mr. William Henry135.0003734508.0500US
# 2、登船港口(Embarked)进行one-hot编码
'''
使用get_dummies进行one-hot编码,产生虚拟变量
'''
embarkedDf = pd.get_dummies(full_data['Embarked'],prefix='Embarked')
embarkedDf.head()
Embarked_CEmbarked_QEmbarked_S
0001
1100
2001
3001
4001
# 在原始数据集上添加one-hot编码产生的虚拟变量
full_data = pd.concat([full_data,embarkedDf],axis=1)

'''
因为已经对Embarked进行了one-hot编码,产生了虚拟变量,因此我们把Embarked列删除

drop删除某一列代码解释:
因为drop(name,axis=1)里面指定了name是哪一列,比如指定的是A这一列,axis=1表示按行操作
那么结合起来就是把A列里面每一行删除,最终结果是删除了A这一列。
简单来说,使用drop删除某几列的方法记住这个语法就可以了: drop([列名1,列名2],axis=1)
'''
full_data.drop('Embarked',axis=1,inplace=True)

full_data.head()
PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked_CEmbarked_QEmbarked_S
010.03Braund, Mr. Owen Harris122.010A/5 211717.2500U001
121.01Cumings, Mrs. John Bradley (Florence Briggs Th...038.010PC 1759971.2833C85100
231.03Heikkinen, Miss. Laina026.000STON/O2. 31012827.9250U001
341.01Futrelle, Mrs. Jacques Heath (Lily May Peel)035.01011380353.1000C123001
450.03Allen, Mr. William Henry135.0003734508.0500U001
# 3、客舱等级(Pclass)进行one-hot编码
# 客舱等级(Pclass):1=1等舱,2=2等舱,3=3等舱


pclassDf = pd.get_dummies(full_data['Pclass'],prefix='Pclass')
pclassDf.head()
Pclass_1Pclass_2Pclass_3
0001
1100
2001
3100
4001
# 在原始数据集上添加one-hot编码产生的虚拟变量
full_data = pd.concat([full_data,pclassDf],axis=1)

full_data.drop('Pclass',axis=1,inplace=True)

full_data.head()
PassengerIdSurvivedNameSexAgeSibSpParchTicketFareCabinEmbarked_CEmbarked_QEmbarked_SPclass_1Pclass_2Pclass_3
010.0Braund, Mr. Owen Harris122.010A/5 211717.2500U001001
121.0Cumings, Mrs. John Bradley (Florence Briggs Th...038.010PC 1759971.2833C85100100
231.0Heikkinen, Miss. Laina026.000STON/O2. 31012827.9250U001001
341.0Futrelle, Mrs. Jacques Heath (Lily May Peel)035.01011380353.1000C123001100
450.0Allen, Mr. William Henry135.0003734508.0500U001001
3.2.2 字符串类别的分类数据
# 1、从姓名列[Name]提取头衔
'''
注意到在乘客名字 (Name) 中,有一个非常显著的特点:
乘客头衔每个名字当中都包含了具体的称谓或者说是头衔,将这部分信息提取出来后可以作为非常有用一个新变量,可以帮助我们进行预测。
'''
full_data['Name'].head(10)
0                              Braund, Mr. Owen Harris
1    Cumings, Mrs. John Bradley (Florence Briggs Th...
2                               Heikkinen, Miss. Laina
3         Futrelle, Mrs. Jacques Heath (Lily May Peel)
4                             Allen, Mr. William Henry
5                                     Moran, Mr. James
6                              McCarthy, Mr. Timothy J
7                       Palsson, Master. Gosta Leonard
8    Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)
9                  Nasser, Mrs. Nicholas (Adele Achem)
Name: Name, dtype: object
'''
定义函数,从姓名中获取头衔
'''
def getTitle(name):
    str1 = name.split(',')[1]
    str2 = str1.split('.')[0]
    str3 = "".join(str2.strip())
    return str3
titleDf = pd.DataFrame()
titleDf['Title'] = full_data['Name'].map(getTitle)
titleDf
Title
0Mr
1Mrs
2Miss
3Mrs
4Mr
......
1304Mr
1305Dona
1306Mr
1307Mr
1308Master

1309 rows × 1 columns

'''
定义以下几种头衔类别:
Officer  政府官员
Royalty  王室
Mr       已婚男士
Mrs      已婚妇女
Miss     年轻未婚女子
Master   有技能的人/教师
'''

# 姓名中头衔字符串与定义头衔类别的映射关系
title_dict = {
    "Capt": "Officer",
    "Col": "Officer",
    "Major": "Officer",
    "Don": "Royalty",
    "Sir": "Royalty",
    "Jonkheer": "Royalty",
    "Dr": "Officer",
    "Rev": "Officer",
    "the Countess": "Royalty",
    "Dona": "Royalty",
    "Mme": "Mrs",
    "Mlle": "Miss",
    "Ms": "Mrs",
    "Mr": "Mr",
    "Mrs": "Mrs",
    "Miss": "Miss",
    "Master": "Master",
    "Lady": "Royalty"
}


titleDf['Title'] = titleDf['Title'].map(title_dict)

# one-hot编码
titleDf = pd.get_dummies(titleDf['Title'])
titleDf.head()
MasterMissMrMrsOfficerRoyalty
0001000
1000100
2010000
3000100
4001000
# 添加one-hot编码到full_data,bing'q并且删除Name这一列
full_data = pd.concat([full_data,titleDf],axis=1)

full_data.drop('Name',axis=1,inplace=True)
full_data
PassengerIdSurvivedSexAgeSibSpParchTicketFareCabinEmbarked_C...Embarked_SPclass_1Pclass_2Pclass_3MasterMissMrMrsOfficerRoyalty
010.0122.00000010A/5 211717.2500U0...1001001000
121.0038.00000010PC 1759971.2833C851...0100000100
231.0026.00000000STON/O2. 31012827.9250U0...1001010000
341.0035.0000001011380353.1000C1230...1100000100
450.0135.000000003734508.0500U0...1001001000
..................................................................
13041305NaN129.88113800A.5. 32368.0500U0...1001001000
13051306NaN039.00000000PC 17758108.9000C1051...0100000001
13061307NaN138.50000000SOTON/O.Q. 31012627.2500U0...1001001000
13071308NaN129.881138003593098.0500U0...1001001000
13081309NaN129.88113811266822.3583U1...0001100000

1309 rows × 21 columns

# 2、从Cabin列提取客舱号信息
full_data['Cabin'] = full_data['Cabin'].map(lambda c:c[0])
full_data.head()
PassengerIdSurvivedSexAgeSibSpParchTicketFareCabinEmbarked_C...Embarked_SPclass_1Pclass_2Pclass_3MasterMissMrMrsOfficerRoyalty
010.0122.010A/5 211717.2500U0...1001001000
121.0038.010PC 1759971.2833C1...0100000100
231.0026.000STON/O2. 31012827.9250U0...1001010000
341.0035.01011380353.1000C0...1100000100
450.0135.0003734508.0500U0...1001001000

5 rows × 21 columns

# 进行one-hot编码
cabinDf = pd.get_dummies(full_data['Cabin'],prefix='Cabin')
cabinDf.head()
Cabin_ACabin_BCabin_CCabin_DCabin_ECabin_FCabin_GCabin_TCabin_U
0000000001
1001000000
2000000001
3001000000
4000000001
full_data = pd.concat([full_data,cabinDf],axis=1)

full_data.drop('Cabin',axis=1,inplace=True)
full_data.head()
PassengerIdSurvivedSexAgeSibSpParchTicketFareEmbarked_CEmbarked_Q...RoyaltyCabin_ACabin_BCabin_CCabin_DCabin_ECabin_FCabin_GCabin_TCabin_U
010.0122.010A/5 211717.250000...0000000001
121.0038.010PC 1759971.283310...0001000000
231.0026.000STON/O2. 31012827.925000...0000000001
341.0035.01011380353.100000...0001000000
450.0135.0003734508.050000...0000000001

5 rows × 29 columns

# 3、建立家庭人数和家庭类别
familyDf = pd.DataFrame()

'''
家庭人数 = 同代直系亲属数(Parch) + 不同代直系亲属数(SibSp) + 乘客自己
'''


familyDf['FamilySize'] = full_data['Parch'] + full_data['SibSp'] + 1

familyDf.head()
FamilySize
02
12
21
32
41
'''
家庭类别
小家庭Family_Small:     家庭人数=1
中等家庭Family_Middle:  2<=家庭人数<=4
大家庭Family_Large:     家庭人数>=5
'''


familyDf['Family_Small']  =  familyDf['FamilySize'].map(lambda cnt: 1 if cnt == 1 else 0 )
familyDf['Family_Middle'] =  familyDf['FamilySize'].map(lambda cnt: 1 if 2 <= cnt <= 4 else 0 )
familyDf['Family_Large']  =  familyDf['FamilySize'].map(lambda cnt: 1 if cnt >= 5 else 0 )


familyDf.head()
FamilySizeFamily_SmallFamily_MiddleFamily_Large
02010
12010
21100
32010
41100
# 拼接到full_data
full_data = pd.concat([full_data,familyDf],axis=1)

full_data.head()
PassengerIdSurvivedSexAgeSibSpParchTicketFareEmbarked_CEmbarked_Q...Cabin_DCabin_ECabin_FCabin_GCabin_TCabin_UFamilySizeFamily_SmallFamily_MiddleFamily_Large
010.0122.010A/5 211717.250000...0000012010
121.0038.010PC 1759971.283310...0000002010
231.0026.000STON/O2. 31012827.925000...0000011100
341.0035.01011380353.100000...0000002010
450.0135.0003734508.050000...0000011100

5 rows × 33 columns

# 目前的特征
full_data.shape
(1309, 33)

3.3 特征选择

# 相关性矩阵
corrDf = full_data.corr()
corrDf
PassengerIdSurvivedSexAgeSibSpParchFareEmbarked_CEmbarked_QEmbarked_S...Cabin_DCabin_ECabin_FCabin_GCabin_TCabin_UFamilySizeFamily_SmallFamily_MiddleFamily_Large
PassengerId1.000000-0.0050070.0134060.025731-0.0552240.0089420.0314160.0481010.011585-0.049836...0.000549-0.0081360.000306-0.045949-0.0230490.000208-0.0314370.0285460.002975-0.063415
Survived-0.0050071.000000-0.543351-0.070323-0.0353220.0816290.2573070.1682400.003650-0.149683...0.1507160.1453210.0579350.016040-0.026456-0.3169120.016639-0.2033670.279855-0.125147
Sex0.013406-0.5433511.0000000.057397-0.109609-0.213125-0.185484-0.066564-0.0886510.115193...-0.057396-0.040340-0.006655-0.0832850.0205580.137396-0.1885830.284537-0.255196-0.077748
Age0.025731-0.0703230.0573971.000000-0.190747-0.1308720.1715210.076179-0.012718-0.059153...0.1328860.106600-0.072644-0.0859770.032461-0.271918-0.1969960.116675-0.038189-0.161210
SibSp-0.055224-0.035322-0.109609-0.1907471.0000000.3735870.160224-0.048396-0.0486780.073709...-0.015727-0.027180-0.0086190.006015-0.0132470.0090640.861952-0.5910770.2535900.699681
Parch0.0089420.081629-0.213125-0.1308720.3735871.0000000.221522-0.008635-0.1009430.071881...-0.0273850.0010840.0204810.058325-0.012304-0.0368060.792296-0.5490220.2485320.624627
Fare0.0314160.257307-0.1854840.1715210.1602240.2215221.0000000.286241-0.130054-0.169894...0.0727370.073949-0.037567-0.0228570.001179-0.5071970.226465-0.2748260.1972810.170853
Embarked_C0.0481010.168240-0.0665640.076179-0.048396-0.0086350.2862411.000000-0.164166-0.778262...0.1077820.027566-0.020010-0.031566-0.014095-0.258257-0.036553-0.1078740.159594-0.092825
Embarked_Q0.0115850.003650-0.088651-0.012718-0.048678-0.100943-0.130054-0.1641661.000000-0.491656...-0.061459-0.042877-0.020282-0.019941-0.0089040.142369-0.0871900.127214-0.122491-0.018423
Embarked_S-0.049836-0.1496830.115193-0.0591530.0737090.071881-0.169894-0.778262-0.4916561.000000...-0.0560230.0029600.0305750.0405600.0181110.1373510.0877710.014246-0.0629090.093671
Pclass_10.0264950.285904-0.1073710.362587-0.034256-0.0130330.5999560.325722-0.166101-0.181800...0.2756980.242963-0.073083-0.0354410.048310-0.776987-0.029656-0.1265510.165965-0.067523
Pclass_20.0227140.093349-0.028862-0.014193-0.052419-0.010057-0.121372-0.134675-0.1219730.196532...-0.037929-0.0502100.127371-0.032081-0.0143250.176485-0.039976-0.0350750.097270-0.118495
Pclass_3-0.041544-0.3223080.116562-0.3020930.0726100.019521-0.419616-0.1714300.243706-0.003805...-0.207455-0.169063-0.0411780.056964-0.0300570.5276140.0584300.138250-0.2233380.155560
Master0.0022540.0852210.164375-0.3639230.3291710.2534820.011596-0.014172-0.0090910.018297...-0.0421920.0018600.058311-0.013690-0.0061130.0411780.355061-0.2653550.1201660.301809
Miss-0.0500270.332795-0.672819-0.2541460.0775640.0664730.092051-0.0143510.198804-0.113886...-0.0125160.008700-0.0030880.061881-0.013832-0.0043640.087350-0.023890-0.0180850.083422
Mr0.014116-0.5491990.8706780.165476-0.243104-0.304780-0.192192-0.065538-0.0802240.108924...-0.030261-0.032953-0.026403-0.0725140.0236110.131807-0.3264870.386262-0.300872-0.194207
Mrs0.0332990.344935-0.5711760.1980910.0616430.2134910.1392350.098379-0.100374-0.022950...0.0803930.0455380.0133760.042547-0.011742-0.1622530.157233-0.3546490.3612470.012893
Officer0.002231-0.0313160.0872880.162818-0.013813-0.0326310.0286960.003678-0.003212-0.001202...0.006055-0.024048-0.017076-0.008281-0.003698-0.067030-0.0269210.0133030.003966-0.034572
Royalty0.0044000.033391-0.0204080.059466-0.010787-0.0301970.0262140.077213-0.021853-0.054250...-0.012950-0.012202-0.008665-0.004202-0.001876-0.071672-0.0236000.008761-0.000073-0.017542
Cabin_A-0.0028310.0222870.0475610.125177-0.039808-0.0307070.0200940.094914-0.042105-0.056984...-0.024952-0.023510-0.016695-0.008096-0.003615-0.242399-0.0429670.045227-0.029546-0.033799
Cabin_B0.0158950.175095-0.0944530.113458-0.0115690.0730510.3937430.161595-0.073613-0.095790...-0.043624-0.041103-0.029188-0.014154-0.006320-0.4237940.032318-0.0879120.0842680.013470
Cabin_C0.0060920.114652-0.0774730.1679930.0486160.0096010.4013700.158043-0.059151-0.101861...-0.053083-0.050016-0.035516-0.017224-0.007691-0.5156840.037226-0.1374980.1419250.001362
Cabin_D0.0005490.150716-0.0573960.132886-0.015727-0.0273850.0727370.107782-0.061459-0.056023...1.000000-0.034317-0.024369-0.011817-0.005277-0.353822-0.025313-0.0743100.102432-0.049336
Cabin_E-0.0081360.145321-0.0403400.106600-0.0271800.0010840.0739490.027566-0.0428770.002960...-0.0343171.000000-0.022961-0.011135-0.004972-0.333381-0.017285-0.0425350.068007-0.046485
Cabin_F0.0003060.057935-0.006655-0.072644-0.0086190.020481-0.037567-0.020010-0.0202820.030575...-0.024369-0.0229611.000000-0.007907-0.003531-0.2367330.0055250.0040550.012756-0.033009
Cabin_G-0.0459490.016040-0.083285-0.0859770.0060150.058325-0.022857-0.031566-0.0199410.040560...-0.011817-0.011135-0.0079071.000000-0.001712-0.1148030.035835-0.0763970.087471-0.016008
Cabin_T-0.023049-0.0264560.0205580.032461-0.013247-0.0123040.001179-0.014095-0.0089040.018111...-0.005277-0.004972-0.003531-0.0017121.000000-0.051263-0.0154380.022411-0.019574-0.007148
Cabin_U0.000208-0.3169120.137396-0.2719180.009064-0.036806-0.507197-0.2582570.1423690.137351...-0.353822-0.333381-0.236733-0.114803-0.0512631.000000-0.0141550.175812-0.2113670.056438
FamilySize-0.0314370.016639-0.188583-0.1969960.8619520.7922960.226465-0.036553-0.0871900.087771...-0.025313-0.0172850.0055250.035835-0.015438-0.0141551.000000-0.6888640.3026400.801623
Family_Small0.028546-0.2033670.2845370.116675-0.591077-0.549022-0.274826-0.1078740.1272140.014246...-0.074310-0.0425350.004055-0.0763970.0224110.175812-0.6888641.000000-0.873398-0.318944
Family_Middle0.0029750.279855-0.255196-0.0381890.2535900.2485320.1972810.159594-0.122491-0.062909...0.1024320.0680070.0127560.087471-0.019574-0.2113670.302640-0.8733981.000000-0.183007
Family_Large-0.063415-0.125147-0.077748-0.1612100.6996810.6246270.170853-0.092825-0.0184230.093671...-0.049336-0.046485-0.033009-0.016008-0.0071480.0564380.801623-0.318944-0.1830071.000000

32 rows × 32 columns

'''
查看各个特征与存活(Survived)的相关系数,倒序排列
'''
corrDf['Survived'].sort_values(ascending=False)
Survived         1.000000
Mrs              0.344935
Miss             0.332795
Pclass_1         0.285904
Family_Middle    0.279855
Fare             0.257307
Cabin_B          0.175095
Embarked_C       0.168240
Cabin_D          0.150716
Cabin_E          0.145321
Cabin_C          0.114652
Pclass_2         0.093349
Master           0.085221
Parch            0.081629
Cabin_F          0.057935
Royalty          0.033391
Cabin_A          0.022287
FamilySize       0.016639
Cabin_G          0.016040
Embarked_Q       0.003650
PassengerId     -0.005007
Cabin_T         -0.026456
Officer         -0.031316
SibSp           -0.035322
Age             -0.070323
Family_Large    -0.125147
Embarked_S      -0.149683
Family_Small    -0.203367
Cabin_U         -0.316912
Pclass_3        -0.322308
Sex             -0.543351
Mr              -0.549199
Name: Survived, dtype: float64

根据各个特征与Survived的相关系数大小,选择这几个特征作为模型的输入:

头衔(前面所在的数据集titleDf)、客舱等级(pclassDf)、家庭大小(familyDf)、船票价格(Fare)、船舱号(cabinDf)、登船港口(embarkedDf)、性别(Sex)

full_X = pd.concat(
    [
        titleDf,
        pclassDf,
        familyDf,
        full_data['Fare'],
        cabinDf,
        embarkedDf,
        full_data['Sex']
    ],axis=1
)

full_X.head()
MasterMissMrMrsOfficerRoyaltyPclass_1Pclass_2Pclass_3FamilySize...Cabin_DCabin_ECabin_FCabin_GCabin_TCabin_UEmbarked_CEmbarked_QEmbarked_SSex
00010000012...0000010011
10001001002...0000001000
20100000011...0000010010
30001001002...0000000010
40010000011...0000010011

5 rows × 27 columns

4、构建模型

  • 坦尼克号测试数据集因为是我们最后要提交给Kaggle的,里面没有生存情况的值,所以不能用于评估模型。

  • 使用Kaggle泰坦尼克号项目给的训练数据集,做为我们的原始数据集(记为source),从这个原始数据集中拆分出训练数据集(记为train:用于模型训练)和测试数据集(记为test:用于模型评估)

# 原始数据集有891行
source_row = 891


# 原始数据集的特征
source_X = full_X.loc[0:source_row-1,:]
# 原始数据集的标签
source_y = full_data.loc[0:source_row-1,'Survived']


# 预测数据集特征
pred_X = full_X.loc[source_row:,:]


print('原始数据集的大小:',source_X.shape[0])
print('预测数据集的大小:',pred_X.shape[0])
原始数据集的大小: 891
预测数据集的大小: 418
# 1、拆分原始数据集
from sklearn.model_selection import train_test_split


train_X,test_X,train_y,test_y  = train_test_split(
    source_X,
    source_y,
    test_size=0.2,
    train_size=0.8
)



# 2、选择机器学习算法,我们选择最基础的逻辑回归算法
from sklearn.linear_model import LogisticRegression

lr = LogisticRegression()


# 3、训练模型
lr.fit(train_X,train_y)
# 4、评估模型,用精确率进行评估
lr.score(test_X,test_y)
0.8156424581005587

5、上传到Kaggle

# 对预测数据集进行预测
pred_y = lr.predict(pred_X)

# 转换为kaggle要求是整形
pred_y = pred_y.astype(int)


# 乘客id
passenger_id = full_data.loc[source_row:,'PassengerId']

predDf = pd.DataFrame(
    {
        'PassengerId':passenger_id,
        'Survived':pred_y
    }
)

predDf.head()
PassengerIdSurvived
8918920
8928931
8938940
8948950
8958961
# 保存结果
predDf.to_csv('./titanic_data/titanic_pred.csv',index=False)
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值