定积分积分换元之区间再现(a+b-x)+一元微积分

定积分积分换元之区间再现+一元微积分

利用函数的对称性

g ( x ) 能 够 保 持 区 间 “ 不 变 ” g(x)能够保持区间“不变” g(x)
f ( x ) + f ( g ( x ) ) = 某 个 容 易 积 分 的 函 数 t ( x ) 则 1 2 ∫ a b t ( x ) d x f(x)+f(g(x))=某个容易积分的函数 t(x) \\则\frac{1}{2}\int_{a}^{b} t(x)dx f(x)+f(g(x))=t(x)21abt(x)dx

一 般 的 情 况 , g ( x ) = a + b − x , 特 例 : 当 f ( x ) 是 奇 函 数 , b = − a , 就 是 奇 函 数 的 性 质 一般的情况,g(x)=a+b-x,特例:当f(x)是奇函数,b=-a,就是奇函数的性质 g(x)=a+bxf(x)b=a


对 于 对于
∫ 1 0 a r c t a n x 1 + x d x 令 g ( x ) = 1 − x 1 + x , 利 用 a r c t a n x + a r c t a n ( 1 − x 1 + x ) = π 4 \int_{1}^{0} \frac{arctanx}{1+x}dx \\ 令g(x)=\frac{1-x}{1+x} ,利用arctanx+arctan(\frac{1-x}{1+x})=\frac{\pi}{4} 101+xarctanxdxg(x)=1+x1xarctanx+arctan(1+x1x)=4π

a = t a n x , b = t a n ( 1 − x 1 + x ) , a , b ∈ ( − π 2 , π 2 ) a=tanx,b=tan(\frac{1-x}{1+x}) ,a,b\in (-\frac{\pi}{2},\frac{\pi}{2}) a=tanx,b=tan(1+x1x)ab(2π,2π)
t a n ( a + b ) = 1 tan(a+b)=1 tan(a+b)=1
所 以 a + b 是 − 3 π 4 或 π 4 所以a+b是-\frac{3\pi}{4}或\frac{\pi}{4} a+b43π4π
正切公式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值