数学分析(二十一)-重积分7:n重积分

本文介绍了如何利用n重积分计算两个物体之间的引力,通过微元法结合万有引力定律,展示了一个六重积分的实例。接着阐述了n维空间区域体积的定义,特别是n维长方体和单纯形的体积计算,并通过变换和递推公式解析了n维球体的体积。最后,提出n维单位球面面积的计算方法,并给出了若干重积分计算的习题。
摘要由CSDN通过智能技术生成

对于 n n n 重积分,我们先介绍一个物理模型, 即两个物体 V 1 V_{1} V1 V 2 V_{2} V2之间的引力问题.

设物体 V 1 V_{1} V1 中点的坐标为 ( x 1 , y 1 , z 1 ) , V 2 \left(x_{1}, y_{1}, z_{1}\right), V_{2} (x1,y1,z1),V2中点的坐标为 ( x 2 , y 2 , z 2 ) \left(x_{2}, y_{2}, z_{2}\right) (x2,y2,z2),它们的密度函数分别为连续函数 ρ 1 ( x 1 , y 1 , z 1 ) \rho_{1}\left(x_{1}, y_{1}, z_{1}\right) ρ1(x1,y1,z1) ρ 2 ( x 2 , y 2 , z 2 ) \rho_{2}\left(x_{2}, y_{2}, z_{2}\right) ρ2(x2,y2,z2), 且设它们之间的引力系数为1 . 我们用微元法求它们之间的引力. 为此, 在 V 1 V_{1} V1 中取质量微元 ρ 1   d x 1   d y 1   d z 1 \rho_{1} \mathrm{~d} x_{1} \mathrm{~d} y_{1} \mathrm{~d} z_{1} ρ1 dx1 dy1 dz1, 在 V 2 V_{2} V2 中取质量微元 ρ 2   d x 2   d y 2   d z 2 \rho_{2} \mathrm{~d} x_{2} \mathrm{~d} y_{2} \mathrm{~d} z_{2} ρ2 dx2 dy2 dz2.由万有引力定律知道, V 1 V_{1} V1 的微元对 V 2 V_{2} V2 的微元的吸引力在 x x x轴上的投影为

ρ 1 ρ 2 ( x 1 − x 2 ) d x 1   d y 1   d z 1   d x 2   d y 2   d z 2 r 3 , \cfrac{\rho_{1} \rho_{2}\left(x_{1}-x_{2}\right) \mathrm{d} x_{1} \mathrm{~d} y_{1} \mathrm{~d} z_{1} \mathrm{~d} x_{2} \mathrm{~d} y_{2} \mathrm{~d} z_{2}}{r^{3}}, r3ρ1ρ2(x1x2)dx1 dy1 dz1 dx2 dy2 dz2,

其中 r = ( x 1 − x 2 ) 2 + ( y 1 − y 2 ) 2 + ( z 1 − z 2 ) 2 r=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}} r=(x1x2)2+(y1y2)2+(z1z2)2 .把两个物体的所有微元间的吸引力在 x x x 轴上投影的量相加, 就得到物体 V 1 V_{1} V1 V 2 V_{2} V2 间的引力在 x x x 轴上投影的值. 它是一个六重积分, 即

F x = ∭ ∬ ρ 1 ( x 1 , y 1 , z 1 ) ρ 2 ( x 2 , y 2 , z 2 ) ( x 1 − x 2 ) r 3   d x 1   d y 1   d z 1   d x 2   d y 2   d z 2 . F_{x}=\iiint \iint \cfrac{\rho_{1}\left(x_{1}, y_{1}, z_{1}\right) \rho_{2}\left(x_{2}, y_{2}, z_{2}\right)\left(x_{1}-x_{2}\right)}{r^{3}} \mathrm{~d} x_{1} \mathrm{~d} y_{1} \mathrm{~d} z_{1} \mathrm{~d} x_{2} \mathrm{~d} y_{2} \mathrm{~d} z_{2} . Fx=∭∬r3ρ1(x1,y1,z1)ρ2(x2,y2,z2)(x1x2) dx1 dy1 dz1 dx2 dy2 dz2.

这个积分是在由六维数组 ( x 1 , y 1 , z 1 , x 2 , y 2 , z 2 ) \left(x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}\right) (x1,y1,z1,x2,y2,z2)构成的六维空间中的六维区域 V = V 1 × V 2 V=V_{1} \times V_{2} V=V1×V2上的积分. 吸引力在 y y y z z z 轴上的投影也同样可由六个自变量的积分形式来表示, 这就是 n n n 重积分 ( n = 6 ) (n=6) (n=6) 的一个例子.

建立 n n n 重积分概念, 首先必须像定义平面图形面积一样定义 n n n维空间区域的体积问题. 最简单的 n n n 维区域- n n n 维长方体

V = [ a 1 , b 1 ] × [ a 2 , b 2 ] × ⋯ × [ a n , b n ] V=\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \times \cdots \times\left[a_{n}, b_{n}\right] V=[a1,b1]×[a2,b2]××[an,bn]

的体积规定为 ( b 1 − a 1 ) ( b 2 − a 2 ) ⋯ ( b n − a n ) \left(b_{1}-a_{1}\right)\left(b_{2}-a_{2}\right) \cdots\left(b_{n}-a_{n}\right) (b1a1)(b2a2)(bnan).在仿照可求面积概念那样建立 n n n 维区域的可求体积概念之后, 可以证明 n n n维单纯形

x 1 ⩾ 0 , x 2 ⩾ 0 , ⋯   , x n ⩾ 0 , x 1 + x 2 + ⋯ + x n ⩽ h x_{1} \geqslant 0, x_{2} \geqslant 0, \cdots, x_{n} \geqslant 0, x_{1}+x_{2}+\cdots+x_{n} \leqslant h x10,x20,,xn0,x1+x2++xnh

n n n 维球体

x 1 2 + x 2 2 + ⋯ + x n 2 ⩽ R 2 x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2} \leqslant R^{2} x12+x22++xn2R2

的体积是存在的.

n n n 元函数 f ( x 1 , x 2 , ⋯   , x n ) f\left(x_{1}, x_{2}, \cdots, x_{n}\right) f(x1,x2,,xn) 定义在 n n n维可求体积的区域 V V V 上. 像二重积分概念那样, 通过对 V V V的分割、近似求和、取极限的过程, 便得到 n n n 重积分的概念:

在这里插入图片描述

与二重积分相仿, n n n 重积分也有如下一些结论:

f ( x 1 , ⋯   , x n ) f\left(x_{1}, \cdots, x_{n}\right) f(x1,,xn) n n n 维有界闭区域 V V V上连续,则 n n n 重积分 (1) 必存在.

计算 n n n 重积分的办法是把它化为重数较低的积分来计算. 如当积分区域是长方体 [ a 1 , b 1 ] × [ a 2 , b 2 ] × ⋯ × [ a n , b n ] \left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \times \cdots \times\left[a_{n}, b_{n}\right] [a1,b1]×[a2,b2]××[an,bn]时, 则有

I = ∫ a 1 b 1   d x 1 ∫ a 2 b 2   d x 2 ⋯ ∫ a n b n f ( x 1 , ⋯   , x n ) d x n . I=\int_{a_{1}}^{b_{1}} \mathrm{~d} x_{1} \int_{a_{2}}^{b_{2}} \mathrm{~d} x_{2} \cdots \int_{a_{n}}^{b_{n}} f\left(x_{1}, \cdots, x_{n}\right) \mathrm{d} x_{n} . I=a1b1 dx1a2b2 dx2anbnf(x1,,xn)dxn.

V V V 由不等式组 a 1 ⩽ x 1 ⩽ b 1 , a 2 ( x 1 ) ⩽ x 2 ⩽ b 2 ( x 1 ) , ⋯   , a n ( x 1 , ⋯   , x n − 1 ) ⩽ x n ⩽ b n ( x 1 , ⋯   , x n − 1 ) a_{1} \leqslant x_{1} \leqslant b_{1}, a_{2}\left(x_{1}\right) \leqslant x_{2} \leqslant b_{2}\left(x_{1}\right), \cdots, a_{n}\left(x_{1}, \cdots, x_{n-1}\right) \leqslant x_{n} \leqslant b_{n}\left(x_{1}, \cdots, x_{n-1}\right) a1x1b1,a2(x1)x2b2(x1),,an(x1,,xn1)xnbn(x1,,xn1) 表示时, 则有

I = ∫ a 1 b 1   d x 1 ∫ a 2 ( x 1 ) b 2 ( x 1 ) d x 2 ⋯ ∫ a n ( x 1 , ⋯   , x n − 1 ) b n ( x

  • 9
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
智慧校园的建设目标是通过数据整合、全面共享,实现校园内教学、科研、管理、服务流程的数字化、信息化、智能化和多媒体化,以提高资源利用率和管理效率,确保校园安全。 智慧校园的建设思路包括构建统一支撑平台、建立完善管理体系、大数据辅助决策和建设校园智慧环境。通过云架构的数据中心与智慧的学习、办公环境,实现日常教学活动、资源建设情况、学业水平情况的全面统计和分析,为决策提供辅助。此外,智慧校园还涵盖了多媒体教学、智慧录播、电子图书馆、VR教室等多种教学模式,以及校园网络、智慧班牌、校园广播等教务管理功能,旨在提升教学品质和管理水平。 智慧校园的详细方案设计进一步细化了教学、教务、安防和运维等多个方面的应用。例如,在智慧教学领域,通过多媒体教学、智慧录播、电子图书馆等技术,实现教学资源的共享和教学模式的创新。在智慧教务方面,校园网络、考场监控、智慧班牌等系统为校园管理提供了便捷和高效。智慧安防系统包括视频监控、一键报警、阳光厨房等,确保校园安全。智慧运维则通过综合管理平台、设备管理、能效管理和资产管理,实现校园设施的智能化管理。 智慧校园的优势和价值体现在个性化互动的智慧教学、协同高效的校园管理、无处不在的校园学习、全面感知的校园环境和轻松便捷的校园生活等方面。通过智慧校园的建设,可以促进教育资源的均衡化,提高教育质量和管理效率,同时保障校园安全和提升师生的学习体验。 总之,智慧校园解决方案通过整合现代信息技术,如云计算、大数据、物联网和人工智能,为教育行业带来了革命性的变革。它不仅提高了教育的质量和效率,还为师生创造了一个更加安全、便捷和富有智慧的学习与生活环境。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值