深度神经网络中最基本的三个概念:Epoch, Batch, Iteration
在复习过程中复习到了这三个概念,如有错误,还望指出
名词解释:
【 ps:图片来源:https://zhuanlan.zhihu.com/p/29409502】
-
Epoch(时期):当一个完整的数据集通过了神经网络一次并且返回了一次,这个过程被称为一次epoch。也就是说,所有训练样本在神经网络中都进行了一次正向传播和一次反向传播。换句话说,一个epoch就是所有训练样本训练一次的过程。
然而,当一个epoch的样本(也就是所有的训练样本)数量过多时(对于计算机而言),就需要把它分成多个小块,也就是分成多个batch来进行训练 -
Batch(批/一批样本):将整个训练样本分成若干个Batch
-
Batch_Size(批大小):每批样本的大小,在训练集中选择一组样本用来更新权值。1个batch包含的样本的数目,通常设为2的n次幂,常用的包括64,128,256。 网络较小时选用256,较大时选用64。
-
Iteration(一次迭代):训练一个batch就是一次Iteration,训练时,1个batch训练图像通过网络训练一次(一次前向传播+一次后向传播),每迭代一次权重更新一次;测试时,1个batch测试图像通过网络一次(一次前向传播)。所谓iterations就是完成一次epoch所需的batch个数
-
为什么要使用多于一个Epoch?
在神经网络中传递完整的数据集一次是不够的,而且我们需要将完整的数据集在同样的神经网络中传递多次。但请记住,我们使用的是有限的数据集,并且我们使用一个迭代过程即梯度下降来优化学习过程。如下图所示。因此仅仅更新一次或者说使用一个epoch是不够的
随着epoch数量增加,神经网络中的权重的更新次数也在增加,曲线从欠拟合变得过拟合。 -
那么,问题来了,几个epoch才是合适的呢?
不幸的是,这个问题并没有正确的答案。对于不同的数据集,答案是不一样的。但是数据的多样性会影响合适的epoch的数量。比如,只有黑色的猫的数据集,以及有各种颜色的猫的数据集。
【 来源:https://blog.csdn.net/qq_39521554/article/details/84480429 】
换算关系:
【 图片来源:https://www.jianshu.com/p/22c50ded4cf7 】
实际上,梯度下降的几种方式的根本区别就在于上面公式中的 Batch_Size 不同。
【 图片来源:https://zhuanlan.zhihu.com/p/29409502 】
举个例子
mnist 数据集有 60000 张图片作为训练数据,10000 张图片作为测试数据。假设现在选择 Batch Size = 100 对模型进行训练。迭代30000次。
- 每个 Epoch 要训练的图片数量:60000(训练集上的所有图像)
- 训练集具有的 Batch 个数: 60000/100=600
- 每个 Epoch 需要完成的 Batch 个数: 600
- 每个 Epoch 具有的 Iteration 个数: 600(完成一个Batch训练,相当于参数迭代一次)
- 每个 Epoch 中发生模型权重更新的次数:600
- 训练 10 个Epoch后,模型权重更新的次数: 600*10=6000
- 不同Epoch的训练,其实用的是同一个训练集的数据。第1个Epoch和第10个Epoch虽然用的都是训练集的60000图片,但是对模型的权重更新值却是完全不同的。因为不同Epoch的模型处于代价函数空间上的不同位置,模型的训练代越靠后,越接近谷底,其代价越小。
- 总共完成30000次迭代,相当于完成了 30000/600=50 个Epoch
参考:https://www.jianshu.com/p/22c50ded4cf7