从全连接到卷积
计算机视觉神经网络构架:1平移不变性2局部性
图像卷积
总结:
二维卷积层的核心计算是二维互相关运算。最简单的形式是,对二维输入数据和卷积核执行互相关操作,然后添加一个偏置。
我们可以设计一个卷积核来检测图像的边缘。
我们可以从数据中学习卷积核的参数。
学习卷积核时,无论用严格卷积运算或互相关运算,卷积层的输出不会受太大影响。
当需要检测输入特征中更广区域时,我们可以构建一个更深的卷积网
填充和步幅
n:图像大小
k:卷积核
p:填充
(
n
h
−
k
h
+
p
h
+
1
)
×
(
n
w
−
k
w
+
p
w
+
1
)
。
(n_h-k_h+p_h+1)\times(n_w-k_w+p_w+1)。
(nh−kh+ph+1)×(nw−kw+pw+1)。
多个输入通道
总结:1、每个输出通道是卷积层的超参数 2、每个输入通道有独立的二维卷积核,所有通道结果相加得到一个输出通道结果 3、每个输出通道有独立的三维卷积核
每个通道都有一个卷积核,结果是所有卷积结果的核
多个输出通道
无论有多少输入通道,可以有多个卷积核,每个核生成一个输出通道
为每个输出通道创建一个形状为 c i × k h × k w c_i\times k_h\times k_w ci×kh×kw的卷积核张量,这样卷积核的形状是 c o × c i × k h × k w c_o\times c_i\times k_h\times k_w co×ci×kh×kw,Y就是 c o × m h × m w c_o\times m_h\times m_w co×mh×mw
通道的作用:每个输出通道可以识别特定模式,高层将这些特定模式组合
1x1卷积层
的全连接层
二维卷积层
![在这里插入图片描述](https://img-blog.csdnimg.cn/717ee87b062f4be98fd50897ac98e35a.pn
池化层
卷积层对位置敏感,需要一定程度的平移不变性
MaxPooling(最大池化层):返回滑动窗口中的最大值。2x2可容纳1像素移动
池化层特点
1、池化层与卷积层类似,都具有填充和步幅
2、没有可学习的参数
3、没有通道融合,每个通道池化,单独输出,输出通道数=输入通道数
平均池化层
取窗口平均值
总结
池化层返回窗口中最大或平均值
缓解卷积层对位置的敏感性
同样有窗口大小、填充和步幅作为超参数
深度学习pytorch框架中
nn.MaxPool2d(3):步幅和窗口大小相同,移动不重叠,位置不够了就舍去
卷积神经网络(LeNet)
LeNet是最早成功的神经网络
先使用卷积层来学习图片空间信息,然后使用全连接层来转换到类别空间