人体关键点检测与MMPose

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


人体姿态估计

人体姿态估计任务是计算机视觉中的一个重要任务,它的目标是从一张图片或者一个视频中识别并估计出人体的姿态。这通常涉及到识别人体的关键部位(例如头部,手腕,膝盖等)以及它们之间的连接方式,从而形成一个人体姿态模型。这项技术有很多应用,包括动画制作、健康医疗、体育训练、人机交互等等。
在这里插入图片描述

3D姿态估计

3D姿态估计是一个计算机视觉任务,其目标是从二维图像或视频中恢复出三维空间中的人体姿态。这意味着除了在二维图像上定位关键点(例如手腕、膝盖等)外,还需要确定这些点在三维空间中的深度信息。

这是一个具有挑战性的任务,因为从二维图像恢复出三维信息存在着固有的歧义性。例如,从一个二维视角看,两个手臂可能看起来是重叠的,但在三维空间中,一个手臂可能比另一个更靠近观察者。

为了解决这些问题,研究者们使用了多种方法,包括基于深度学习的方法,这些方法通过训练大量的带有姿态标注的数据,学习从二维图像到三维姿态的映射关系。

3D姿态估计在许多领域都有重要应用,例如虚拟现实、增强现实、游戏、运动分析、医疗保健和机器人技术等。
在这里插入图片描述

人体参数化模型

人体参数化模型是一种用来表示人体形状和姿态的数学模型。这些模型通常基于真实人体数据进行构建,通过一组参数来控制生成的人体形状和姿态。

其中最著名的人体参数化模型包括SMPL(Skinned Multi-Person Linear Model)和SURREAL(Synthetic Humans for Recognition)等。这些模型使用一组控制关节位置的参数(如手臂弯曲的角度,头部旋转的程度等)和一组控制身体形状的参数(如身高,体重等)。

人体参数化模型在很多领域都有应用,包括计算机图形学(如创建逼真的人体动画)、计算机视觉(如3D人体姿态估计)以及生物力学等。

使用这些模型的一大优点是,它们可以生成多样性的人体形状和姿态,从而适应不同的应用场景。然而,由于人体的复杂性,创建一个精确和实用的人体参数化模型仍然是一个挑战。

下游任务

行为识别

行为识别是一种计算机视觉任务,目的是从一系列图像或视频中识别和理解人或动物的行为或动作,如跑步、跳跃、摔倒等。这个技术在监控系统、视频游戏、人机交互和医疗健康等领域有着广泛的应用。

CG、动画在这里插入图片描述

人机交互

在这里插入图片描述

动物行为识别

在这里插入图片描述

2D人体估计的主流算法和局限性

主流的2D人体姿态估计算法主要基于深度学习。算法通常包括两个主要步骤:1) 检测人体的关键点,比如头部、手腕、膝盖等;2) 根据关键点之间的空间关系,推断出人体的姿态。

这类算法的具体形式可以有很多,如卷积神经网络(CNN)和深度卷积神经网络(Deep CNN),以及更复杂的模型,例如堆叠式沙漏网络(Stacked Hourglass Networks)和简单快速准确关键点检测器(Simple, Fast, Accurate Keypoint Detector,简称:OpenPose)。

然而,尽管这些方法在很多情况下能够取得不错的效果,但它们还存在一些局限性:

  1. 对遮挡的处理:如果人体的一部分被遮挡,这些算法可能会产生错误的姿态估计。
  2. 视角变化:这些算法的性能通常依赖于视角。对于一些罕见的或极端的视角,它们可能无法准确估计姿态。
  3. 计算复杂度:深度学习算法通常需要大量的计算资源和数据,这可能限制了它们在资源有限的设备上的应用。
  4. 二维信息的局限:2D人体姿态估计无法提供深度信息,对于需要三维信息的应用场景,例如增强现实和虚拟现实,其应用可能受到限制。

AI问答辅助思考

人体关键点检测的数据集是什么样的?

人体关键点检测的数据集通常包含大量的图像或视频,以及与之对应的关键点标注。这些标注信息表明了每个人体关键点在图像中的位置。人体关键点通常包括头部、颈部、肩部、手腕、肘部、膝盖、脚踝等部位。

举个例子,MPII Human Pose数据集就是一个著名的2D人体姿态估计数据集。它包含了大约25000张图像,涵盖了多种日常活动场景,每个图像都包含了人体14个主要关键点的标注。

对于3D人体姿态估计,数据集还会包含深度信息或多视角图像,例如Human3.6M数据集,它是一个大型的3D人体姿态估计数据集,包含了从多个相机角度捕获的人体运动图像,以及对应的3D关键点标注。

这些数据集通常通过复杂的采集和标注过程生成,例如使用多视角摄像头、深度传感器或者通过人工标注等方式。

请用python给出数据集示例,并绘图展示

我将使用Python的matplotlib和numpy库以及一个假设的简化数据集来演示这个过程。请注意,由于这是一个示例,所以我们只考虑一个图像和四个关键点(左右手和左右脚)。

这是一个非常简化的情况,实际的数据集会包含数以千计的图像,每个图像都有多个关键点。

import matplotlib.pyplot as plt
import numpy as np

# 假设我们有一个200x200的图像
image = np.random.rand(200, 200)

# 假设我们有四个关键点:左手、右手、左脚、右脚
# 关键点坐标存储在一个二维数组中,每行对应一个关键点的 (y, x) 坐标
keypoints = np.array([
    [50, 100],  # 左手
    [50, 150],  # 右手
    [150, 100],  # 左脚
    [150, 150]  # 右脚
])

# 显示图像
plt.imshow(image, cmap='gray')

# 在关键点位置画红色圆点
for y, x in keypoints:
    plt.scatter(x, y, c='r')

plt.show()

在这里插入图片描述

在这个例子中,我们首先生成了一个200x200的随机图像。然后,我们定义了四个关键点的位置,并在这些位置上画上红色的点。

这个例子简化了实际的情况,但希望能够帮助你理解人体关键点检测的数据集是如何构建的。在实际应用中,关键点的位置通常由专家通过人工方式进行标注,或者通过使用动作捕捉系统自动获取。

神经网络的输入和输出维度是多少?如何设计模型结构和损失函数?

设计神经网络模型的输入、输出维度、模型结构和损失函数需要根据特定的任务需求来确定。

对于2D人体姿态估计,输入通常是彩色图像,所以输入维度通常是(Height, Width, 3),其中3对应RGB三个通道。模型的输出是关键点的位置,所以输出维度通常是(N, 2),其中N是关键点的数量,2代表2D坐标(x, y)。

模型的设计可以使用多种神经网络架构,如卷积神经网络(CNN), 堆叠式沙漏网络等。最重要的是,模型需要能够从输入图像中提取出足够的特征来定位人体关键点。

损失函数通常用来量化模型预测的关键点位置和实际位置之间的差异。对于人体姿态估计任务,常用的损失函数有均方误差损失(Mean Squared Error, MSE)或者均方根误差(Root Mean Squared Error, RMSE)。这些损失函数可以有效地衡量预测位置和真实位置之间的距离。

需要注意的是,以上内容是针对2D人体姿态估计的一般情况。对于特定的任务或数据集,可能需要特定的模型设计和损失函数。例如,对于3D姿态估计,模型的输出维度会变成(N, 3),同时可能需要使用不同的网络结构和损失函数。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值