OpenMMLab-2-人体姿态估计、关键点检测与MMPose

本文详细介绍了人体姿态估计和关键点检测的任务,包括2D姿态估计的回归和热力图方法,多人姿态估计的自顶向下与自底向上策略,以及3D姿态估计。此外,还讨论了评估指标如PCP、PDJ、PCK和OKS-based mAP,并提及其在人机交互、CG动画等领域的应用。
摘要由CSDN通过智能技术生成

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


一、人体姿态估计或关键点检测任务

任务介绍

给定一张图片,任务要求检测图像中人脸、手部、身体等部位的关键点。
输入: 图像 I
输出:所有关键点的像素坐标(x1,y1)…(xJ, yJ),这里的J为关键点的总数,取决于具体的关键点检测任务和模型。
关键点检测可以预测人体关键点在三维空间中的坐标( x , y , z ),进而在三维空间中还原人的姿态。

下游任务

PoseC3D: 基于人体关键点识别行为动作。这项工作已被开源在 MMAction2 中。
CG、动画: 基于3D人体关键点检测,根据人体姿态,表情姿态的关键点的变化驱动动画人物的动作

除此之外,还有很多有趣的应用:

1 人机交互:通过识别人手部的动作和姿态去控制其他物体;
2 动物行为分析:检测动物关键点,分析动物的行为

二、2D 姿态估计

在图像中定位人体关键点(通常为人体主要关节)的坐标,如臀部、颈部和左右手坐标等。
在这里插入图片描述

基本思路1:基于回归 (Regression Based)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值