数学分析:集合的基本运算

数学分析:集合的基本运算

集合有 并、交、差、补 四种基本运算。

集合的并

定义 1(集合的并):设 A , B A,B A,B 为两个集合,则由集合 A A A 和集合 B B B 中的所有元素汇集而成的集合称为集合 A A A 和集合 B B B。记作 A ∪ B A \cup B AB。即:
A ∪ B = { x   ∣ x ∈ A  或  x ∈ B } 。 A \cup B=\{x ~ | x \in A ~ \text{或} ~ x \in B\}。 AB={x xA  xB}

或者用纯粹的逻辑符号表示:
A ∪ B = { x   ∣   x ∈ A ∨ x ∈ B } 。 A \cup B = \{x ~ | ~ x \in A \lor x \in B \} \text{。} AB={x  xAxB}

推广:设 A 1 , A 2 , ⋯   , A n A_1,A_2,\cdots,A_n A1,A2,,An n n n 个集合,则 n n n 个集合的并集可表示为:
A 1 ∪ A 2 ∪ ⋯ ∪ A n = { x   ∣   x ∈ A 1 ∨ x ∈ A 2 ∨ ⋯ ∨ x ∈ A n } , A_1 \cup A_2 \cup \cdots \cup A_n = \{x ~ | ~ x \in A_1 \lor x \in A_2 \lor \cdots \lor x \in A_n\} \text{,} A1A2An={x  xA1xA2xAn}
可简单地记作: ∪ n i = 1 A i \underset{i=1}{\overset{n}{\cup}}{A_i} i=1nAi,即
∪ n i = 1 A i = A 1 ∪ A 2 ∪ ⋯ ∪ A n 。 \underset{i=1}{\overset{n}{\cup}}{A_i} = A_1 \cup A_2 \cup \cdots \cup A_n \text{。} i=1nAi=A1A2An

集合的交

定义 2(集合的交):设 A , B A,B A,B 为两个集合,则由集合 A A A 和集合 B B B 中的公共元素汇集而成的集合称为集合 A A A 和集合 B B B。记作 A ∩ B A \cap B AB。即:
A ∩ B = { x   ∣   x ∈ A  且  x ∈ B } 。 A \cap B = \{x ~ | ~ x \in A ~ \text{且} ~ x \in B\}。 AB={x  xA  xB}

或者用纯粹的逻辑符号表示:
A ∩ B = { x   ∣   x ∈ A ∧ x ∈ B } 。 A \cap B = \{x ~ | ~ x \in A \land x \in B \} \text{。} AB={x  xAxB}

推广:设 A 1 , A 2 , ⋯   , A n A_1,A_2,\cdots,A_n A1,A2,,An n n n 个集合,则 n n n 个集合的并集可表示为:
A 1 ∪ A 2 ∪ ⋯ ∪ A n = { x   ∣   x ∈ A 1 ∧ x ∈ A 2 ∧ ⋯ ∧ x ∈ A n } , A_1 \cup A_2 \cup \cdots \cup A_n = \{x ~ | ~ x \in A_1 \land x \in A_2 \land \cdots \land x \in A_n\} \text{,} A1A2An={x  xA1xA2xAn}
可简单地记作: ∩ n i = 1 A i \underset{i=1}{\overset{n}{\cap}}{A_i} i=1nAi,即
∩ n i = 1 A i = A 1 ∩ A 2 ∩ ⋯ ∩ A n 。 \underset{i=1}{\overset{n}{\cap}}{A_i} = A_1 \cap A_2 \cap \cdots \cap A_n \text{。} i=1nAi=A1A2An

集合的差

定义 3(集合的差):设 A , B A,B A,B 为两个集合,则由属于集合 A A A 但不属于集合 B B B 的所有元素汇集的集合称为集合 A A A 与集合 B B B。记作 A ∖ B A \setminus B AB A − B A -B AB。即:
A ∖ B = { x   ∣   x ∈ A  且  x ∉ B } 。 A \setminus B = \{x ~ | ~ x \in A ~ \text{且} ~ x \notin B\}。 AB={x  xA  x/B}

集合的补

定义4 (集合的补):设 A , X A,X A,X 为两个集合,且集合 A A A 是集合 X X X 的子集,则集合 X X X 与集合 A A A 的差集称为集合 A A A 关于集合 X X X。记作 A X C = X ∖ A A_{X}^{C} = X \setminus A AXC=XA,或者简记为 A C = X ∖ A A^{C} = X \setminus A AC=XA。即
A X C = { x   ∣   x ∈ X  且  x ∉ A } 。 A_{X}^{C} = \{x ~ | ~ x \in X ~ \text{且} ~ x \notin A\}。 AXC={x  xX  x/A}

显然集合的 满足:
A ∖ B = A ∩ B C 。 A \setminus B = A \cap B^{C}。 AB=ABC

集合的运算律

定理 1:设 A , B , C , X A,B,C,X A,B,C,X 均为集合,且 A , B , C A,B,C A,B,C 是集合 X X X 的子集,则:

1.  交换律 \mathbf{1.} ~ \text{交换律} 1. 交换律

A ∪ B = B ∪ A , A ∩ B = B ∩ A  ; A \cup B = B \cup A,A \cap B = B \cap A\ \text{;} AB=BA,AB=BA 

2.  结合律 \mathbf{2.} ~ \text{结合律} 2. 结合律

( A ∪ B ) ∪ C = A ∪ ( B ∪ C ) , ( A ∩ B ) ∩ C = A ∩ ( B ∩ C ) ; (A \cup B) \cup C = A \cup (B \cup C),(A \cap B) \cap C = A \cap (B \cap C)\text{;} (AB)C=A(BC),(AB)C=A(BC)

3.  分配律 \mathbf{3.} ~ \text{分配律} 3. 分配律

A ∪ ( B ∩ C ) = ( A ∪ B ) ∩ ( A ∪ C ) , A ∩ ( B ∪ C ) = ( A ∩ B ) ∪ ( A ∩ C ) ; A \cup (B \cap C) = (A \cup B)\cap (A \cup C),A \cap (B \cup C) = (A \cap B)\cup (A \cap C)\text{;} A(BC)=(AB)(AC),A(BC)=(AB)(AC)

4.  对偶律 ( D e   M o r g a n 公式 ) \mathbf{4.} ~ \text{对偶律}(De ~ Morgan \text{公式}) 4. 对偶律(De Morgan公式)

( A ∪ B ) C = A C ∩ B C , ( A ∩ B ) C = A C ∪ B C 。 (A \cup B)^{C} = A^{C} \cap B^{C},(A \cap B)^{C} = A^{C} \cup B^{C}。 (AB)C=ACBC,(AB)C=ACBC

参考文献

[1] 陈纪修,于崇华,金路著. 数学分析 上 第2版. 北京:高等教育出版社, 2004.06.
[2] 华东师范大学数学系编. 数学分析 上 第4版. 北京:高等教育出版社, 2010.07.
[3] 周性伟. 实变函数 第2版. 北京:高等教育出版社, 2007.01.

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值