3.2 线性空间的子空间
例 1: 几何空间 = { 空间中所有以原点 O 为起点的向量 } \text{几何空间} = \{空间中所有以原点 O 为起点的向量\} 几何空间={空间中所有以原点O为起点的向量}
定义 1. 子空间:设
V
V
V 是数域
K
K
K 上的一个 线性空间
,
U
U
U 是
V
V
V 的一个 非空子集
,若
U
U
U 对于
V
V
V 的加法、数量乘法也成为数域
K
K
K 上的一个线性空间,则称
U
U
U 是
V
V
V 的一个 线性子空间
,简称 子空间
。
说明:
(1)由定义 1 可验证:在几何空间中,
- 过原点的一个平面是几何空间的一个子空间;
- 过原点的一条直线是几何空间的一个子空间;
- 不过原点的平面不是是几何空间的一个子空间;
- 不过原点的直线不是几何空间的一个子空间。
(2)设 V V V 是数域 K K K 上的一个线性空间, U U U 是 V V V 的一个子空间,则显然 U U U 本身也是 K K K 上的一个线性空间,自然满足线性空间的 8 8 8 条运算法则以及相关的一些性质。
思考:对于线性空间 V V V 的任意一个非空子集 U U U,如何判断它是否是 V V V 的一个子空间?
定理 1 子空间的判别:设
V
V
V 是数域
K
K
K 上的一个线性空间,
U
U
U 是
V
V
V 的一个非空子集。则:
U
U
U 是
V
V
V 的子空间,当且仅当
U
U
U 对于
V
V
V 的加法和数量乘法封闭,即:
- ∀ α , β ∈ V \forall ~ \boldsymbol \alpha, \boldsymbol \beta \in V ∀ α,β∈V, α + β ∈ U \boldsymbol \alpha + \boldsymbol \beta \in U α+β∈U;
- ∀ α , k ∈ K \forall ~ \boldsymbol \alpha,k \in K ∀ α,k∈K, k ⋅ α ∈ U k \cdot \boldsymbol \alpha \in U k⋅α∈U。
证明:
(1)必要性:设
V
V
V 是数域
K
K
K 上的一个线性空间,
U
U
U 是
V
V
V 的一个子空间。则
V
V
V 的加法、数量乘法 限制到
U
U
U 上后,分别是
U
U
U 的加法及数量乘法,因此由线性空间的定义,有:
∀
α
,
β
∈
U
⟹
α
+
β
∈
U
;
∀
α
,
k
∈
K
⟹
k
⋅
α
∈
U
.
\forall ~ \boldsymbol \alpha ,\boldsymbol \beta \in U \Longrightarrow \boldsymbol \alpha + \boldsymbol \beta \in U;\quad \forall ~ \boldsymbol \alpha,k \in K \Longrightarrow k \cdot \boldsymbol \alpha \in U.
∀ α,β∈U⟹α+β∈U;∀ α,k∈K⟹k⋅α∈U.
(2)充分性:设
V
V
V 是数域
K
K
K 上的一个线性空间,
V
V
V 的非空子集
U
U
U 对于
V
V
V 的加法和数量乘法封闭。则
V
V
V 的加法、数量乘法 限制到
U
U
U 上后,分别是
U
U
U 的加法及数量乘法。
显然,在
U
U
U 中,线性空间的运算法则
1
,
2
,
5
,
6
,
7
,
8
1,2,5,6,7,8
1,2,5,6,7,8 都是满足的,那么要想证明
U
U
U 是
V
V
V 的子空间,只需验证:
U
U
U 满足线性空间的运算法则
3
,
4
3,4
3,4。
由于
U
U
U 非空,因此
U
U
U 中至少存在元素
β
\beta
β,则由 数量乘法的封闭性
,有:
0 ⋅ β = 0 ∈ U , 0 \cdot \boldsymbol \beta =\boldsymbol 0 \in U, 0⋅β=0∈U,
因此,
U
U
U 中有零元,满足运算法则 3。
对于
∀
α
∈
U
\forall \boldsymbol \alpha \in U
∀α∈U,由 数量乘法的封闭性
,有:
( − 1 ) ⋅ α = ( − α ) ∈ U , (-1) \cdot \boldsymbol\alpha = (-\boldsymbol\alpha) \in U, (−1)⋅α=(−α)∈U,
因此,
U
U
U 中的任意元素都存在负元,即满足运算法则 4。
综上,
U
U
U 是
V
V
V 的一个线性子空间。
证毕
说明:
(1)如此一来,判断线性空间
V
V
V 的子集
U
U
U 是否为其子空间,仅需考虑:
- U U U 是否非空?
- U U U 是否对 V V V 的加法封闭?
-
U
U
U 是否对
V
V
V 的数量乘法封闭?
而不用严格地按照线性空间定义中的 8 8 8 条运算法则进行逐一验证,这大大简化了证明步骤!
例 2:
{
0
}
\{\boldsymbol 0\}
{0}、
V
V
V 都是
V
V
V 的子空间,称为
V
V
V 的 平凡子空间
。
下面,探讨这样一个问题:给出线性空间 V V V 的一个向量组 α 1 , α 1 , ⋯ , α s \boldsymbol \alpha_{1},\boldsymbol \alpha_{1},\cdots,\boldsymbol \alpha_{s} α1,α1,⋯,αs,如何构造出一个包含该向量组的 最小的子空间?
定义 2. 线性组合:设
V
V
V 是数域
K
K
K 上的一个线性空间,
α
1
,
α
1
,
⋯
,
α
s
∈
V
\boldsymbol \alpha_{1},\boldsymbol \alpha_{1},\cdots,\boldsymbol \alpha_{s} \in V
α1,α1,⋯,αs∈V,
k
1
,
k
2
,
⋯
,
k
s
∈
K
k_{1},k_{2},\cdots,k_{s} \in K
k1,k2,⋯,ks∈K,则称
k
1
α
1
+
k
2
α
1
+
⋯
+
k
s
α
s
k_1 \boldsymbol \alpha_{1} + k_2 \boldsymbol \alpha_{1} + \cdots + k_s \boldsymbol \alpha_{s}
k1α1+k2α1+⋯+ksαs
为向量组
α
1
,
α
1
,
⋯
,
α
s
\boldsymbol \alpha_{1},\boldsymbol \alpha_{1},\cdots,\boldsymbol \alpha_{s}
α1,α1,⋯,αs 的一个 线性组合
。
现在,按照如下方式,定义一个集合
W
W
W:
W
:
=
{
k
1
α
1
+
k
2
α
1
+
⋯
+
k
s
α
s
∣
α
i
∈
V
,
k
i
∈
K
,
1
≤
i
≤
s
}
W:=\{k_1 \boldsymbol \alpha_{1} + k_2 \boldsymbol \alpha_{1} + \cdots + k_s \boldsymbol \alpha_{s} \mid \boldsymbol{\alpha}_{i} \in V,k_{i} \in K,1 \le i \le s\}
W:={k1α1+k2α1+⋯+ksαs∣αi∈V,ki∈K,1≤i≤s}
显然:
- 0 = 0 ⋅ α 1 + 0 ⋅ α 1 + ⋯ + 0 ⋅ α s ∈ W \boldsymbol{0} = 0\cdot\boldsymbol \alpha_{1} + 0 \cdot \boldsymbol \alpha_{1} + \cdots + 0 \cdot \boldsymbol \alpha_{s} \in W 0=0⋅α1+0⋅α1+⋯+0⋅αs∈W,因此 W W W 非空,且有零元;
- W W W 对于 V V V 的加法、数量乘法封闭,
由定理 1, W W W 是 V V V 的一个子空间。
定义 3. 生成子空间:设
V
V
V 是数域
K
K
K 上的一个线性空间,
α
1
,
α
1
,
⋯
,
α
s
∈
V
\boldsymbol \alpha_{1},\boldsymbol \alpha_{1},\cdots,\boldsymbol \alpha_{s} \in V
α1,α1,⋯,αs∈V,
k
1
,
k
2
,
⋯
,
k
s
∈
K
k_{1},k_{2},\cdots,k_{s} \in K
k1,k2,⋯,ks∈K,则称
W
:
=
{
k
1
α
1
+
k
2
α
1
+
⋯
+
k
s
α
s
∣
α
i
∈
V
,
k
i
∈
K
,
1
≤
i
≤
s
}
W:=\{k_1 \boldsymbol \alpha_{1} + k_2 \boldsymbol \alpha_{1} + \cdots + k_s \boldsymbol \alpha_{s} \mid \boldsymbol{\alpha}_{i} \in V,k_{i} \in K,1 \le i \le s\}
W:={k1α1+k2α1+⋯+ksαs∣αi∈V,ki∈K,1≤i≤s}
为由向量组
α
1
,
α
1
,
⋯
,
α
s
\boldsymbol \alpha_{1},\boldsymbol \alpha_{1},\cdots,\boldsymbol \alpha_{s}
α1,α1,⋯,αs 生成(张成)的线性子空间,记作:
L
(
α
1
,
α
1
,
⋯
,
α
s
)
或
<
α
1
,
α
1
,
⋯
,
α
s
>
L(\boldsymbol \alpha_{1},\boldsymbol \alpha_{1},\cdots,\boldsymbol \alpha_{s}) \quad \text{或} <\boldsymbol \alpha_{1},\boldsymbol \alpha_{1},\cdots,\boldsymbol \alpha_{s}>
L(α1,α1,⋯,αs)或<α1,α1,⋯,αs>
说明:
(1)显然,
β ∈ < α 1 , α 1 , ⋯ , α s > ⟺ 存在 K 中的一组数 k 1 , k 2 , ⋯ , k s , 使得: β = k 1 α 1 + k 2 α 1 + ⋯ + k s α s \boldsymbol{\beta} \in <\boldsymbol \alpha_{1},\boldsymbol \alpha_{1},\cdots,\boldsymbol \alpha_{s}> \\ \Longleftrightarrow \\ 存在 K 中的一组数 k_1,k_2,\cdots,k_s,使得:\boldsymbol{\beta} = k_1 \boldsymbol \alpha_{1} + k_2 \boldsymbol \alpha_{1} + \cdots + k_s \boldsymbol \alpha_{s} β∈<α1,α1,⋯,αs>⟺存在K中的一组数k1,k2,⋯,ks,使得:β=k1α1+k2α1+⋯+ksαs
定义 4. 线性表出:设 V V V 是数域 K K K 上的一个线性空间, β , α 1 , α 1 , ⋯ , α s ∈ V \boldsymbol{\beta},\boldsymbol \alpha_{1},\boldsymbol \alpha_{1},\cdots,\boldsymbol \alpha_{s} \in V β,α1,α1,⋯,αs∈V,若存在数域 K K K 中的一组数 k 1 , k 2 , ⋯ , k s , k_1,k_2,\cdots,k_s, k1,k2,⋯,ks, 使得:
β = k 1 α 1 + k 2 α 1 + ⋯ + k s α s \boldsymbol{\beta} = k_1 \boldsymbol \alpha_{1} + k_2 \boldsymbol \alpha_{1} + \cdots + k_s \boldsymbol \alpha_{s} β=k1α1+k2α1+⋯+ksαs
则称 向量 β \boldsymbol{\beta} β 可以由 向量组 α 1 , α 1 , ⋯ , α s \boldsymbol \alpha_{1},\boldsymbol \alpha_{1},\cdots,\boldsymbol \alpha_{s} α1,α1,⋯,αs 线性表出 或 线性表示。
说明:
(1)因此,
β ∈ < α 1 , α 1 , ⋯ , α s > ⇕ β 可由向量组 α 1 , α 1 , ⋯ , α s 线性表出 \boldsymbol{\beta} \in <\boldsymbol \alpha_{1},\boldsymbol \alpha_{1},\cdots,\boldsymbol \alpha_{s}> \\ \Updownarrow \\ \boldsymbol{\beta} 可由向量组 \boldsymbol \alpha_{1},\boldsymbol \alpha_{1},\cdots,\boldsymbol \alpha_{s} 线性表出 β∈<α1,α1,⋯,αs>⇕β可由向量组α1,α1,⋯,αs线性表出
牛刀小试:
现在,回顾本章起初提出的大问题:
对于数域 K K K 上的 n n n 元线性方程组,如何直接从方程组的系数、常数项出发,判断方程组是否有解,若有解,有多少解?
解:
设数域 K K K 上的 n n n 元线性方程组:
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 ⋯ a s 1 x 1 + a s 2 x 2 + ⋯ + a s n x n = b s ⟺ x 1 α 1 + x 2 α 2 + ⋯ + x n α n = β \begin{cases} &a_{11}x_{1} + a_{12}x_{2} +\cdots +a_{1n}x_{n} = b_{1} \\ &a_{21}x_{1} + a_{22}x_{2} +\cdots +a_{2n}x_{n} = b_{2} \\ &\cdots \\ &a_{s1}x_{1} + a_{s2}x_{2} +\cdots +a_{sn}x_{n} = b_{s} \end{cases} \Longleftrightarrow x_{1} \boldsymbol{\alpha}_{1} + x_{2} \boldsymbol{\alpha}_{2} + \cdots + x_{n} \boldsymbol{\alpha}_{n} = \boldsymbol{\beta} ⎩ ⎨ ⎧a11x1+a12x2+⋯+a1nxn=b1a21x1+a22x2+⋯+a2nxn=b2⋯as1x1+as2x2+⋯+asnxn=bs⟺x1α1+x2α2+⋯+xnαn=β
其中,
α 1 = ( a 11 a 21 ⋯ a s 1 ) , α 2 = ( a 12 a 22 ⋯ a s 2 ) , ⋯ , α n = ( a 1 n a 2 n ⋯ a s n ) \boldsymbol{\alpha}_{1} = \left( \begin{array}{c} a_{11} \\ a_{21} \\ \cdots \\ a_{s1} \end{array} \right), \boldsymbol{\alpha}_{2} = \left( \begin{array}{c} a_{12} \\ a_{22} \\ \cdots \\ a_{s2} \end{array} \right), \cdots, \boldsymbol{\alpha}_{n} = \left( \begin{array}{c} a_{1n} \\ a_{2n} \\ \cdots \\ a_{sn} \end{array} \right) α1=⎝ ⎛a11a21⋯as1⎠ ⎞,α2=⎝ ⎛a12a22⋯as2⎠ ⎞,⋯,αn=⎝ ⎛a1na2n⋯asn⎠ ⎞
于是,
x 1 α 1 + x 2 α 2 + ⋯ + x n α n = β 有解 ⇕ 存在 K 中的一组数 k 1 , k 2 , ⋯ , k s , 使得: β = k 1 α 1 + k 2 α 1 + ⋯ + k s α s ⇕ β 可由向量组 α 1 , α 1 , ⋯ , α s 线性表出 ⇕ β ∈ < α 1 , α 1 , ⋯ , α s > x_{1} \boldsymbol{\alpha}_{1} + x_{2} \boldsymbol{\alpha}_{2} + \cdots + x_{n} \boldsymbol{\alpha}_{n} = \boldsymbol{\beta} ~ 有解 \\ \Updownarrow \\ 存在 K 中的一组数 k_1,k_2,\cdots,k_s,使得:\boldsymbol{\beta} = k_1 \boldsymbol \alpha_{1} + k_2 \boldsymbol \alpha_{1} + \cdots + k_s \boldsymbol \alpha_{s} \\ \Updownarrow \\ \boldsymbol{\beta} 可由向量组 \boldsymbol \alpha_{1},\boldsymbol \alpha_{1},\cdots,\boldsymbol \alpha_{s} 线性表出 \\ \Updownarrow \\ \boldsymbol{\beta} \in <\boldsymbol \alpha_{1},\boldsymbol \alpha_{1},\cdots,\boldsymbol \alpha_{s}> x1α1+x2α2+⋯+xnαn=β 有解⇕存在K中的一组数k1,k2,⋯,ks,使得:β=k1α1+k2α1+⋯+ksαs⇕β可由向量组α1,α1,⋯,αs线性表出⇕β∈<α1,α1,⋯,αs>
证毕
说明:
(1)在牛刀小试中,我们得到了大问题的部分结论,即:线性方程组有解的充分必要条件;
(2)重大创新:开辟了一条直接从方程组的系数和常数项出发,判断方程组是否有解的新途
径!
(3)下一步的任务是:研究线性空间及其子空间的结构。
参考:
- 邱维声. 高等代数课程. 哔哩哔哩.
- 邱维声. 高等代数——大学高等代数课程创新教材(上册),北京:清华大学出版社,2010.06.
- 邱维声. 高等代数——大学高等代数课程创新教材(下册),北京:清华大学出版社,2010.10.