(邱维声)高等代数课程笔记:线性空间的子空间

3.2 线性空间的子空间

例 1 几何空间 = { 空间中所有以原点 O 为起点的向量 } \text{几何空间} = \{空间中所有以原点 O 为起点的向量\} 几何空间={空间中所有以原点O为起点的向量}

定义 1. 子空间:设 V V V 是数域 K K K 上的一个 线性空间 U U U V V V 的一个 非空子集,若 U U U 对于 V V V 的加法、数量乘法也成为数域 K K K 上的一个线性空间,则称 U U U V V V 的一个 线性子空间,简称 子空间

说明

(1)由定义 1 可验证:在几何空间中,

  • 过原点的一个平面是几何空间的一个子空间;
  • 过原点的一条直线是几何空间的一个子空间;
  • 不过原点的平面不是是几何空间的一个子空间;
  • 不过原点的直线不是几何空间的一个子空间。

(2)设 V V V 是数域 K K K 上的一个线性空间, U U U V V V 的一个子空间,则显然 U U U 本身也是 K K K 上的一个线性空间,自然满足线性空间的 8 8 8 条运算法则以及相关的一些性质。

思考:对于线性空间 V V V 的任意一个非空子集 U U U,如何判断它是否是 V V V 的一个子空间?

定理 1 子空间的判别:设 V V V 是数域 K K K 上的一个线性空间, U U U V V V 的一个非空子集。则: U U U V V V 的子空间,当且仅当 U U U 对于 V V V 的加法和数量乘法封闭,即:

  • ∀   α , β ∈ V \forall ~ \boldsymbol \alpha, \boldsymbol \beta \in V  α,βV α + β ∈ U \boldsymbol \alpha + \boldsymbol \beta \in U α+βU
  • ∀   α , k ∈ K \forall ~ \boldsymbol \alpha,k \in K  α,kK k ⋅ α ∈ U k \cdot \boldsymbol \alpha \in U kαU

证明:
(1)必要性:设 V V V 是数域 K K K 上的一个线性空间, U U U V V V 的一个子空间。则 V V V 的加法、数量乘法 限制到 U U U 上后,分别是 U U U 的加法及数量乘法,因此由线性空间的定义,有:
∀   α , β ∈ U ⟹ α + β ∈ U ; ∀   α , k ∈ K ⟹ k ⋅ α ∈ U . \forall ~ \boldsymbol \alpha ,\boldsymbol \beta \in U \Longrightarrow \boldsymbol \alpha + \boldsymbol \beta \in U;\quad \forall ~ \boldsymbol \alpha,k \in K \Longrightarrow k \cdot \boldsymbol \alpha \in U.  α,βUα+βU; α,kKkαU.
(2)充分性:设 V V V 是数域 K K K 上的一个线性空间, V V V 的非空子集 U U U 对于 V V V 的加法和数量乘法封闭。则 V V V 的加法、数量乘法 限制到 U U U 上后,分别是 U U U 的加法及数量乘法。
显然,在 U U U 中,线性空间的运算法则 1 , 2 , 5 , 6 , 7 , 8 1,2,5,6,7,8 1,2,5,6,7,8 都是满足的,那么要想证明 U U U V V V 的子空间,只需验证: U U U 满足线性空间的运算法则 3 , 4 3,4 3,4
由于 U U U 非空,因此 U U U 中至少存在元素 β \beta β,则由 数量乘法的封闭性,有:

0 ⋅ β = 0 ∈ U , 0 \cdot \boldsymbol \beta =\boldsymbol 0 \in U, 0β=0U,

因此, U U U 中有零元,满足运算法则 3。
对于 ∀ α ∈ U \forall \boldsymbol \alpha \in U αU,由 数量乘法的封闭性,有:

( − 1 ) ⋅ α = ( − α ) ∈ U , (-1) \cdot \boldsymbol\alpha = (-\boldsymbol\alpha) \in U, (1)α=(α)U,

因此, U U U 中的任意元素都存在负元,即满足运算法则 4。
综上, U U U V V V 的一个线性子空间。

证毕

说明
(1)如此一来,判断线性空间 V V V 的子集 U U U 是否为其子空间,仅需考虑:

  • U U U 是否非空?
  • U U U 是否对 V V V 的加法封闭?
  • U U U 是否对 V V V 的数量乘法封闭?
    而不用严格地按照线性空间定义中的 8 8 8 条运算法则进行逐一验证,这大大简化了证明步骤!

例 2 { 0 } \{\boldsymbol 0\} {0} V V V 都是 V V V 的子空间,称为 V V V平凡子空间

下面,探讨这样一个问题:给出线性空间 V V V 的一个向量组 α 1 , α 1 , ⋯   , α s \boldsymbol \alpha_{1},\boldsymbol \alpha_{1},\cdots,\boldsymbol \alpha_{s} α1,α1,,αs,如何构造出一个包含该向量组的 最小的子空间?

定义 2. 线性组合:设 V V V 是数域 K K K 上的一个线性空间, α 1 , α 1 , ⋯   , α s ∈ V \boldsymbol \alpha_{1},\boldsymbol \alpha_{1},\cdots,\boldsymbol \alpha_{s} \in V α1,α1,,αsV k 1 , k 2 , ⋯   , k s ∈ K k_{1},k_{2},\cdots,k_{s} \in K k1,k2,,ksK,则称
k 1 α 1 + k 2 α 1 + ⋯ + k s α s k_1 \boldsymbol \alpha_{1} + k_2 \boldsymbol \alpha_{1} + \cdots + k_s \boldsymbol \alpha_{s} k1α1+k2α1++ksαs
为向量组 α 1 , α 1 , ⋯   , α s \boldsymbol \alpha_{1},\boldsymbol \alpha_{1},\cdots,\boldsymbol \alpha_{s} α1,α1,,αs 的一个 线性组合
现在,按照如下方式,定义一个集合 W W W
W : = { k 1 α 1 + k 2 α 1 + ⋯ + k s α s ∣ α i ∈ V , k i ∈ K , 1 ≤ i ≤ s } W:=\{k_1 \boldsymbol \alpha_{1} + k_2 \boldsymbol \alpha_{1} + \cdots + k_s \boldsymbol \alpha_{s} \mid \boldsymbol{\alpha}_{i} \in V,k_{i} \in K,1 \le i \le s\} W:={k1α1+k2α1++ksαsαiV,kiK,1is}
显然:

  • 0 = 0 ⋅ α 1 + 0 ⋅ α 1 + ⋯ + 0 ⋅ α s ∈ W \boldsymbol{0} = 0\cdot\boldsymbol \alpha_{1} + 0 \cdot \boldsymbol \alpha_{1} + \cdots + 0 \cdot \boldsymbol \alpha_{s} \in W 0=0α1+0α1++0αsW,因此 W W W 非空,且有零元;
  • W W W 对于 V V V 的加法、数量乘法封闭,

由定理 1, W W W V V V 的一个子空间。

定义 3. 生成子空间:设 V V V 是数域 K K K 上的一个线性空间, α 1 , α 1 , ⋯   , α s ∈ V \boldsymbol \alpha_{1},\boldsymbol \alpha_{1},\cdots,\boldsymbol \alpha_{s} \in V α1,α1,,αsV k 1 , k 2 , ⋯   , k s ∈ K k_{1},k_{2},\cdots,k_{s} \in K k1,k2,,ksK,则称
W : = { k 1 α 1 + k 2 α 1 + ⋯ + k s α s ∣ α i ∈ V , k i ∈ K , 1 ≤ i ≤ s } W:=\{k_1 \boldsymbol \alpha_{1} + k_2 \boldsymbol \alpha_{1} + \cdots + k_s \boldsymbol \alpha_{s} \mid \boldsymbol{\alpha}_{i} \in V,k_{i} \in K,1 \le i \le s\} W:={k1α1+k2α1++ksαsαiV,kiK,1is}
为由向量组 α 1 , α 1 , ⋯   , α s \boldsymbol \alpha_{1},\boldsymbol \alpha_{1},\cdots,\boldsymbol \alpha_{s} α1,α1,,αs 生成(张成)的线性子空间,记作:
L ( α 1 , α 1 , ⋯   , α s ) 或 < α 1 , α 1 , ⋯   , α s > L(\boldsymbol \alpha_{1},\boldsymbol \alpha_{1},\cdots,\boldsymbol \alpha_{s}) \quad \text{或} <\boldsymbol \alpha_{1},\boldsymbol \alpha_{1},\cdots,\boldsymbol \alpha_{s}> L(α1,α1,,αs)<α1,α1,,αs>

说明

(1)显然,

β ∈ < α 1 , α 1 , ⋯   , α s > ⟺ 存在 K 中的一组数 k 1 , k 2 , ⋯   , k s , 使得: β = k 1 α 1 + k 2 α 1 + ⋯ + k s α s \boldsymbol{\beta} \in <\boldsymbol \alpha_{1},\boldsymbol \alpha_{1},\cdots,\boldsymbol \alpha_{s}> \\ \Longleftrightarrow \\ 存在 K 中的一组数 k_1,k_2,\cdots,k_s,使得:\boldsymbol{\beta} = k_1 \boldsymbol \alpha_{1} + k_2 \boldsymbol \alpha_{1} + \cdots + k_s \boldsymbol \alpha_{s} β∈<α1,α1,,αs>存在K中的一组数k1,k2,,ks,使得:β=k1α1+k2α1++ksαs

定义 4. 线性表出:设 V V V 是数域 K K K 上的一个线性空间, β , α 1 , α 1 , ⋯   , α s ∈ V \boldsymbol{\beta},\boldsymbol \alpha_{1},\boldsymbol \alpha_{1},\cdots,\boldsymbol \alpha_{s} \in V β,α1,α1,,αsV,若存在数域 K K K 中的一组数 k 1 , k 2 , ⋯   , k s , k_1,k_2,\cdots,k_s, k1,k2,,ks, 使得:

β = k 1 α 1 + k 2 α 1 + ⋯ + k s α s \boldsymbol{\beta} = k_1 \boldsymbol \alpha_{1} + k_2 \boldsymbol \alpha_{1} + \cdots + k_s \boldsymbol \alpha_{s} β=k1α1+k2α1++ksαs

则称 向量 β \boldsymbol{\beta} β 可以由 向量组 α 1 , α 1 , ⋯   , α s \boldsymbol \alpha_{1},\boldsymbol \alpha_{1},\cdots,\boldsymbol \alpha_{s} α1,α1,,αs 线性表出 或 线性表示。

说明

(1)因此,

β ∈ < α 1 , α 1 , ⋯   , α s > ⇕ β 可由向量组 α 1 , α 1 , ⋯   , α s 线性表出 \boldsymbol{\beta} \in <\boldsymbol \alpha_{1},\boldsymbol \alpha_{1},\cdots,\boldsymbol \alpha_{s}> \\ \Updownarrow \\ \boldsymbol{\beta} 可由向量组 \boldsymbol \alpha_{1},\boldsymbol \alpha_{1},\cdots,\boldsymbol \alpha_{s} 线性表出 β∈<α1,α1,,αs>β可由向量组α1,α1,,αs线性表出

牛刀小试

现在,回顾本章起初提出的大问题:

对于数域 K K K 上的 n n n 元线性方程组,如何直接从方程组的系数、常数项出发,判断方程组是否有解,若有解,有多少解?

设数域 K K K 上的 n n n 元线性方程组:

{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 ⋯ a s 1 x 1 + a s 2 x 2 + ⋯ + a s n x n = b s ⟺ x 1 α 1 + x 2 α 2 + ⋯ + x n α n = β \begin{cases} &a_{11}x_{1} + a_{12}x_{2} +\cdots +a_{1n}x_{n} = b_{1} \\ &a_{21}x_{1} + a_{22}x_{2} +\cdots +a_{2n}x_{n} = b_{2} \\ &\cdots \\ &a_{s1}x_{1} + a_{s2}x_{2} +\cdots +a_{sn}x_{n} = b_{s} \end{cases} \Longleftrightarrow x_{1} \boldsymbol{\alpha}_{1} + x_{2} \boldsymbol{\alpha}_{2} + \cdots + x_{n} \boldsymbol{\alpha}_{n} = \boldsymbol{\beta} a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2as1x1+as2x2++asnxn=bsx1α1+x2α2++xnαn=β

其中,

α 1 = ( a 11 a 21 ⋯ a s 1 ) , α 2 = ( a 12 a 22 ⋯ a s 2 ) , ⋯   , α n = ( a 1 n a 2 n ⋯ a s n ) \boldsymbol{\alpha}_{1} = \left( \begin{array}{c} a_{11} \\ a_{21} \\ \cdots \\ a_{s1} \end{array} \right), \boldsymbol{\alpha}_{2} = \left( \begin{array}{c} a_{12} \\ a_{22} \\ \cdots \\ a_{s2} \end{array} \right), \cdots, \boldsymbol{\alpha}_{n} = \left( \begin{array}{c} a_{1n} \\ a_{2n} \\ \cdots \\ a_{sn} \end{array} \right) α1= a11a21as1 ,α2= a12a22as2 ,,αn= a1na2nasn

于是,

x 1 α 1 + x 2 α 2 + ⋯ + x n α n = β  有解 ⇕ 存在 K 中的一组数 k 1 , k 2 , ⋯   , k s , 使得: β = k 1 α 1 + k 2 α 1 + ⋯ + k s α s ⇕ β 可由向量组 α 1 , α 1 , ⋯   , α s 线性表出 ⇕ β ∈ < α 1 , α 1 , ⋯   , α s > x_{1} \boldsymbol{\alpha}_{1} + x_{2} \boldsymbol{\alpha}_{2} + \cdots + x_{n} \boldsymbol{\alpha}_{n} = \boldsymbol{\beta} ~ 有解 \\ \Updownarrow \\ 存在 K 中的一组数 k_1,k_2,\cdots,k_s,使得:\boldsymbol{\beta} = k_1 \boldsymbol \alpha_{1} + k_2 \boldsymbol \alpha_{1} + \cdots + k_s \boldsymbol \alpha_{s} \\ \Updownarrow \\ \boldsymbol{\beta} 可由向量组 \boldsymbol \alpha_{1},\boldsymbol \alpha_{1},\cdots,\boldsymbol \alpha_{s} 线性表出 \\ \Updownarrow \\ \boldsymbol{\beta} \in <\boldsymbol \alpha_{1},\boldsymbol \alpha_{1},\cdots,\boldsymbol \alpha_{s}> x1α1+x2α2++xnαn=β 有解存在K中的一组数k1,k2,,ks,使得:β=k1α1+k2α1++ksαsβ可由向量组α1,α1,,αs线性表出β∈<α1,α1,,αs>

证毕

说明

(1)在牛刀小试中,我们得到了大问题的部分结论,即:线性方程组有解的充分必要条件;

(2)重大创新:开辟了一条直接从方程组的系数和常数项出发,判断方程组是否有解的新途
径!

(3)下一步的任务是:研究线性空间及其子空间的结构


参考

  1. 邱维声. 高等代数课程. 哔哩哔哩.
  2. 邱维声. 高等代数——大学高等代数课程创新教材(上册),北京:清华大学出版社,2010.06.
  3. 邱维声. 高等代数——大学高等代数课程创新教材(下册),北京:清华大学出版社,2010.10.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值