(邱维声)高等代数课程笔记:行列式按一行(列)展开

行列式按一行(列)展开

例题 1:一般地,设 ∣ A ∣ |A| A 是一个三阶行列式,则有

∣ A ∣ = ∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 − a 13 a 22 a 31 − a 12 a 21 a 33 − a 11 a 23 a 32 = a 11 ( a 22 a 23 − a 23 a 32 ) − a 21 ( a 12 a 33 − a 13 a 32 ) + a 31 ( a 12 a 23 − a 13 a 22 ) = a 11 ∣ a 22 a 23 a 32 a 33 ∣ − a 21 ∣ a 12 a 13 a 32 a 33 ∣ + a 31 ∣ a 12 a 13 a 22 a 23 ∣ \begin{aligned} |A| &= \left|\begin{matrix} a_{11} &a_{12} &a_{13}\\ a_{21} &a_{22} &a_{23}\\ a_{31} &a_{32} &a_{33} \end{matrix}\right|\\ &= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}\\ &- a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}\\ &=a_{11}(a_{22}a_{23}-a_{23}a_{32}) - a_{21}(a_{12}a_{33}-a_{13}a_{32}) + a_{31}(a_{12}a_{23}-a_{13}a_{22}) \\ &= a_{11} \left|\begin{matrix} a_{22} & a_{23}\\ a_{32} &a_{33} \end{matrix}\right| - a_{21} \left|\begin{matrix} a_{12} & a_{13}\\ a_{32} & a_{33} \end{matrix}\right| + a_{31} \left|\begin{matrix} a_{12} & a_{13}\\ a_{22} & a_{23} \end{matrix}\right| \end{aligned} A= a11a21a31a12a22a32a13a23a33 =a11a22a33+a12a23a31+a13a21a32a13a22a31a12a21a33a11a23a32=a11(a22a23a23a32)a21(a12a33a13a32)+a31(a12a23a13a22)=a11 a22a32a23a33 a21 a12a32a13a33 +a31 a12a22a13a23

#

\quad 通过 例题 1 可以看到,三阶行列式的计算可以归结为二阶行列式的计算。这种“降阶” 的操作无疑简化了行列式的计算!

\quad 另外,如果我们引入两个概念 余子式代数余子式

  • ∣ a 22 a 23 a 32 a 33 ∣ \left|\begin{matrix} a_{22} & a_{23}\\ a_{32} &a_{33} \end{matrix}\right| a22a32a23a33 称为 a 11 a_{11} a11余子式,记作 M 11 M_{11} M11

  • ( − 1 ) 1 + 1 ⋅ M 11 (-1)^{1+1}\cdot M_{11} (1)1+1M11 称为 a 11 a_{11} a11代数余子式,记作 A 11 A_{11} A11

  • ∣ a 12 a 13 a 32 a 33 ∣ \left|\begin{matrix} a_{12} & a_{13}\\ a_{32} & a_{33} \end{matrix}\right| a12a32a13a33 称为 a 21 a_{21} a21余子式,记作 M 21 M_{21} M21

  • ( − 1 ) 2 + 1 ⋅ M 21 (-1)^{2+1}\cdot M_{21} (1)2+1M21 称为 a 21 a_{21} a21代数余子式,记作 A 21 A_{21} A21

  • ∣ a 12 a 13 a 22 a 23 ∣ \left|\begin{matrix} a_{12} & a_{13}\\ a_{22} & a_{23} \end{matrix}\right| a12a22a13a23 称为 a 31 a_{31} a31代数余子式,记作 M 31 M_{31} M31

  • ( − 1 ) 3 + 1 ⋅ M 31 (-1)^{3+1} \cdot M_{31} (1)3+1M31 称为 a 31 a_{31} a31代数余子式,记作 A 31 A_{31} A31.

则显然有:

∣ A ∣ = a 11 M 11 − a 21 M 21 + a 31 M 31 = a 11 ⋅ ( − 1 ) 1 + 1 ⋅ M 11 + a 21 ⋅ ( − 1 ) 2 + 1 ⋅ M 21 + a 31 ⋅ ( − 1 ) 3 + 1 ⋅ M 31 = a 11 A 11 + a 21 A 21 + a 31 A 31 . \begin{aligned} |A| &= a_{11} M_{11} - a_{21} M_{21} + a_{31} M_{31}\\ &= a_{11} \cdot (-1)^{1+1}\cdot M_{11} + a_{21} \cdot (-1)^{2+1} \cdot M_{21} + a_{31} \cdot (-1)^{3+1}\cdot M_{31}\\ &= a_{11}A_{11} + a_{21}A_{21} + a_{31}A_{31}. \end{aligned} A=a11M11a21M21+a31M31=a11(1)1+1M11+a21(1)2+1M21+a31(1)3+1M31=a11A11+a21A21+a31A31.

\quad 可以看到,引入 余子式 以及 代数余子式 之后,进一步简化了行列式的计算公式!

\quad 自然而然地会想:能够将这种操作推广到一般的 n n n 阶行列式呢?

\quad 这种由 “特殊到一般” 的思想,就是 演绎


定义 1. 余子式与代数余子式:一般地,设 A = ( a i j ) A = (a_{ij}) A=(aij) 是一个 n n n 级矩阵, ∣ A ∣ |A| A 是其行列式,若划去 ∣ A ∣ |A| A 的第 ( i , j ) (i,j) (i,j) 元所在的第 i i i 行、第 j j j 列元素,则剩下的元素按照原顺序可以构成一个 n − 1 n-1 n1 阶行列式,称为 ∣ A ∣ |A| A 的第 ( i , j ) (i,j) (i,j) 元的 余子式,记作 M i j M_{ij} Mij

\quad A i j = ( − 1 ) i + j ⋅ M i j A_{ij} = (-1)^{i+j}\cdot M_{ij} Aij=(1)i+jMij,则称 A i j A_{ij} Aij ∣ A ∣ |A| A 的第 ( i , j ) (i,j) (i,j) 元的 代数余子式

\quad 由前面的讨论可知,当 n = 3 n=3 n=3 时,

∣ A ∣ = a 11 A 11 + a 21 A 21 + a 31 A 31 |A| = a_{11}A_{11} + a_{21} A_{21} + a_{31}A_{31} A=a11A11+a21A21+a31A31

自然会猜测:对于一般的 n n n 阶行列式,是否成立

∣ A ∣ = ∑ j = 1 n a 1 j A 1 j |A| = \sum_{j=1}^{n}a_{1j}A_{1j} A=j=1na1jA1j

更一般地,对于给定的 i i i i = 1 , 2 , ⋯   , n i=1,2,\cdots,n i=1,2,,n),是否成立

∣ A ∣ = ∑ j = 1 n a i j A i j |A| = \sum_{j=1}^{n}a_{ij}A_{ij} A=j=1naijAij


定理 1 n n n 级矩阵 A = ( a i j ) A=(a_{ij}) A=(aij) 的行列式 ∣ A ∣ |A| A 满足

∣ A ∣ = ∑ j = 1 n a i j A i j = a i 1 A i 1 + a i 2 A i 2 + ⋯ + a i n A i n \begin{aligned} |A| &= \sum_{j=1}^{n}a_{ij}A_{ij} \\ &=a_{i1}A_{i1} + a_{i2}A_{i2} + \cdots + a_{in}A_{in} \end{aligned} A=j=1naijAij=ai1Ai1+ai2Ai2++ainAin

其中, i ∈ { 1 , 2 , ⋯   , n } i \in \{1,2,\cdots,n\} i{1,2,,n}.

证明:

\quad 取定 A A A 的第 i i i 行,将 a i j a_{ij} aij 排在第一位,即:

∣ A ∣ = ∑ j k 1 ⋯ k i − 1 k i + 1 ⋯ k n ( − 1 ) τ ( i 1 ⋯ ( i − 1 ) ( i + 1 ) ⋯ n ) + τ ( j k 1 ⋯ k j − 1 k j + 1 ⋯ k n ) a i j a 1 k 1 ⋯ a i − 1 , k i − 1 a i + 1 , k i + 1 ⋯ a n , k n |A| = \sum_{j k_{1}\cdots k_{i-1} k_{i+1}\cdots k_{n}}(-1)^{\tau(i1\cdots (i-1)(i+1)\cdots n) + \tau(jk_{1}\cdots k_{j-1}k_{j+1}\cdots k_{n})}a_{ij}a_{1k_{1}}\cdots a_{i-1,k_{i-1}} a_{i+1,k_{i+1}}\cdots a_{n,k_{n}} A=jk1ki1ki+1kn(1)τ(i1(i1)(i+1)n)+τ(jk1kj1kj+1kn)aija1k1ai1,ki1ai+1,ki+1an,kn

其中, K 1 , k 2 ⋯   , k i − 1 , k i + 1 , ⋯   , k n ∈ { 1 , 2 , ⋯   , n } − { j } K_{1},k_{2}\cdots,k_{i-1},k_{i+1},\cdots,k_{n} \in \{1,2,\cdots,n\}-\{j\} K1,k2,ki1,ki+1,,kn{1,2,,n}{j}.

\quad 注意,

τ ( i 1 ⋯ ( i − 1 ) ( i + 1 ) ⋯ n ) = i − 1 \tau(i1\cdots (i-1)(i+1)\cdots n) = i-1 τ(i1(i1)(i+1)n)=i1

τ ( j k 1 ⋯ k i − 1 k i + 1 ⋯ k n ) = j − 1 + τ ( k 1 ⋯ k i − 1 k i + 1 ⋯ k n ) \tau(jk_{1}\cdots k_{i-1} k_{i+1}\cdots k_{n}) = j-1 + \tau(k_{1}\cdots k_{i-1}k_{i+1}\cdots k_{n}) τ(jk1ki1ki+1kn)=j1+τ(k1ki1ki+1kn)

于是,

∣ A ∣ = ∑ j k 1 ⋯ k i − 1 k i + 1 ⋯ k n ( − 1 ) i + j ⋅ ( − 1 ) τ ( k 1 ⋯ k i − 1 k i + 1 ⋯ k n ) a i j a 1 k 1 ⋯ a i − 1 , k i − 1 a i + 1 , k i + 1 ⋯ a n , k n = ∑ j = 1 n ( − 1 ) i + j ⋅ a i j ∑ k 1 ⋯ k i − 1 k i + 1 ⋯ k n ( − 1 ) τ ( k 1 ⋯ k i − 1 k i + 1 ⋯ k n ) a 1 k 1 ⋯ a i − 1 , k i − 1 a i + 1 , k i + 1 ⋯ a n , k n = ∑ j = 1 n a i j ⋅ ( − 1 ) i + j ⋅ M i j = ∑ j = 1 n a i j A i j \begin{aligned} |A| &= \sum_{j k_{1}\cdots k_{i-1} k_{i+1}\cdots k_{n}}(-1)^{i+j} \cdot (-1)^{\tau(k_{1}\cdots k_{i-1}k_{i+1}\cdots k_{n})} a_{ij}a_{1k_{1}}\cdots a_{i-1,k_{i-1}} a_{i+1,k_{i+1}}\cdots a_{n,k_{n}}\\ &= \sum_{j=1}^{n}(-1)^{i+j}\cdot a_{ij} \sum_{k_{1\cdots k_{i-1}k_{i+1}\cdots k_{n}}} (-1)^{\tau(k_{1}\cdots k_{i-1}k_{i+1}\cdots k_{n})}a_{1k_{1}}\cdots a_{i-1,k_{i-1}} a_{i+1,k_{i+1}}\cdots a_{n,k_{n}}\\ &= \sum_{j=1}^{n}a_{ij} \cdot (-1)^{i+j} \cdot M_{ij}\\ &= \sum_{j=1}^{n}a_{ij}A_{ij} \end{aligned} A=jk1ki1ki+1kn(1)i+j(1)τ(k1ki1ki+1kn)aija1k1ai1,ki1ai+1,ki+1an,kn=j=1n(1)i+jaijk1ki1ki+1kn(1)τ(k1ki1ki+1kn)a1k1ai1,ki1ai+1,ki+1an,kn=j=1naij(1)i+jMij=j=1naijAij

#


\quad 由于行列式的行与列具有对称性,因此,不难得到 定理 2

定理 2 n n n 级矩阵 A = ( a i j ) A=(a_{ij}) A=(aij) 的行列式 ∣ A ∣ |A| A 满足

∣ A ∣ = ∑ l = 1 n a l j A l j = a 1 j A 1 j + a 2 j A 2 j + ⋯ + a n j A n j \begin{aligned} |A| &= \sum_{l=1}^{n}a_{lj}A_{lj}\\ &= a_{1j}A_{1j} + a_{2j}A_{2j} + \cdots + a_{nj}A_{nj} \end{aligned} A=l=1naljAlj=a1jA1j+a2jA2j++anjAnj

其中, j ∈ { 1 , 2 , ⋯   , n } j \in \{1,2,\cdots,n\} j{1,2,,n}.

证明:

\quad 由行列式的性质 1, ∣ A ∣ = ∣ A ′ ∣ |A| = |A'| A=A.

\quad 对行列式 ∣ A ′ ∣ |A'| A 按第 j j j 行展开,相当于对 ∣ A ∣ |A| A 按第 j j j 列展开,于是

∣ A ′ ∣ = ∣ A ∣ = a 1 j A 1 j + a 2 j A 2 j + ⋯ + a n j A n j |A'| = |A| = a_{1j}A_{1j} + a_{2j} A_{2j} + \cdots + a_{nj} A_{nj} A=A=a1jA1j+a2jA2j++anjAnj

#


\quad 之后,介绍 定理 1定理 2 相关的一些应用。

定理 3:设 A = ( a i j ) A=(a_{ij}) A=(aij) n n n 级矩阵。当 k ≠ i k\ne i k=i 时,

a i 1 A k 1 + a i 2 A k 2 + ⋯ a i n A k n = 0 a_{i1}A_{k1}+a_{i2}A_{k2}+\cdots a_{in}A_{kn} = 0 ai1Ak1+ai2Ak2+ainAkn=0

证明:

\quad 对于等式左边,可以构造一个行列式

∣ B ∣ = ∣ a 11 ⋯ a n 1 ⋮ ⋯ ⋮ a i 1 ⋯ a i n ⋮ ⋯ ⋮ a i 1 ⋯ a i n ⋮ ⋯ ⋮ a n 1 ⋯ a n n ∣ |B| = \left|\begin{matrix} a_{11} &\cdots &a_{n1}\\ \vdots &\cdots &\vdots\\ a_{i1} &\cdots &a_{in}\\ \vdots &\cdots &\vdots\\ a_{i1} &\cdots &a_{in}\\ \vdots &\cdots &\vdots\\ a_{n1} &\cdots &a_{nn} \end{matrix}\right| B= a11ai1ai1an1an1ainainann

其中, ∣ B ∣ |B| B 的第 i i i 行与第 k k k 行的元素对应相等。由行列式的性质 5 可知, ∣ B ∣ = 0 |B|=0 B=0.

#

\quad 同理可证 定理 4.

定理 4:设 A = ( a i j ) A=(a_{ij}) A=(aij) n n n 级矩阵。当 l ≠ j l\ne j l=j 时,

a 1 l A 1 j + a 2 l A 2 j + ⋯ a n l A n j = 0 a_{1l}A_{1j}+a_{2l}A_{2j}+\cdots a_{nl}A_{nj} = 0 a1lA1j+a2lA2j+anlAnj=0


\quad 最后,介绍一个重要的概念 VanderMonder 行列式

∣ 1 1 ⋯ 1 a 1 a 2 ⋯ a n a 1 2 a 2 2 ⋯ a n 2 ⋮ ⋮ ⋮ a 1 n − 1 a 2 n − 1 ⋯ a n n − 1 ∣ = ∏ 1 ≤ j < i ≤ n ( a i − a j ) \left|\begin{matrix} 1 & 1 &\cdots &1\\ a_{1} &a_{2} &\cdots &a_{n}\\ a_{1}^{2} &a_{2}^{2} &\cdots &a_{n}^{2}\\ \vdots &\vdots & & \vdots\\ a_{1}^{n-1} &a_{2}^{n-1} &\cdots &a_{n}^{n-1} \end{matrix}\right| = \prod_{1\le j<i\le n}{\left( a_i-a_j \right)} 1a1a12a1n11a2a22a2n11anan2ann1 =1j<in(aiaj)


参考

  • 邱维声. 高等代数课程.
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值