【图像降噪;边缘增强】高斯滤波(GussianBlur()函数)

高斯滤波

高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,广泛应用于图像处理的减噪过程。
模拟人眼,关注中心区域。
参数:

  • x,y是卷积参数坐标
  • 标准差σ

在这里插入图片描述
σ越小,关注区域越集中

cv2.GussianBlur()函数

语法:GaussianBlur(src,ksize,sigmaX [,dst [,sigmaY [,borderType]]])-> dst
——src输入图像;图像可以具有任意数量的通道,这些通道可以独立处理,但深度应为CV_8U,CV_16U,CV_16S,CV_32F或CV_64F。
——dst输出图像的大小和类型与src相同。
——ksize高斯内核大小。 ksize.width和ksize.height可以不同,但​​它们都必须为正数和奇数,也可以为零,然后根据sigma计算得出。
——sigmaX X方向上的高斯核标准偏差。
——sigmaY Y方向上的高斯核标准差;如果sigmaY为零,则将其设置为等于sigmaX;如果两个sigmas为零,则分别从ksize.width和ksize.height计算得出;为了完全控制结果,而不管将来可能对所有这些语义进行的修改,建议指定所有ksize,sigmaX和sigmaY。

blur_1 = cv2.GaussianBlur(img,(5,5),0)  #(5, 5)表示高斯矩阵的长与宽都是5,标准差取0

高斯金字塔(缩放)

图像金字塔化:先进行图像平滑,再进行降采样,根据降采样率,得到一系列尺寸逐渐减小的图像。

操作:n次(高斯卷积→2倍降采样)→n层金字塔

目的:捕捉不同尺寸的物体
在这里插入图片描述

本质:信号的多尺度表示法

直接降采样会损失信息
在这里插入图片描述

完整代码如下

import cv2
import numpy as np
import matplotlib.pyplot as plt

img = cv2.imread('opencv.png',0) #直接读为灰度图像
for i in range(2000): #添加点噪声
    temp_x = np.random.randint(0,img.shape[0])
    temp_y = np.random.randint(0,img.shape[1])
    img[temp_x][temp_y] = 255

blur_1 = cv2.GaussianBlur(img,(5,5),0)

blur_2 = cv2.medianBlur(img,5)

plt.subplot(1,3,1),plt.imshow(img,'gray')#默认彩色,另一种彩色bgr
plt.subplot(1,3,2),plt.imshow(blur_1,'gray')
plt.subplot(1,3,3),plt.imshow(blur_2,'gray')
plt.show()

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

莫余

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值