EmpTransfo: A Multi-head Transformer Architecture for Creating Empathetic Dialog Systems
期刊:arXiv: Computation and Language 2020
论文类别:情感对话生成
对话轮次:多轮
添加信息:主题、情感、动作
数据集:DailyDialog
本文带来Rohola Zandie和Mohammad H. Mahoor共同创作的文章
论文试图解决什么问题?
- 从生成回复的内容方面看:本文希望机器回复的内容带有共情的能力
- 从模型方面看:本文提出的基于预训练的模型,并且建立在当时最好的对话系统上的模型
- 从数据集方面看:本文此次在更高质量的数据集[包含:情感、主题、动作]上进行实验
汇总:提出了一种新颖的多头Transformer架构,可以使用关于情绪、话题和行动的明确上下文信息,以适当的情绪回应用户的话语,而不会牺牲响应的一致性、相关性和一致性。
这是否是一个新的问题?
否,在论文《Emotional Chatting Machine: Emotional Conversation Generation with Internal and External Memory》**[A] ** 里第一次提出生成带有情感的对话回复。
本文与其的不同之处有ÿ
本文提出EmpTransfo,一种基于预训练GPT的多头Transformer架构,旨在生成带有情绪的对话回复。通过结合主题、情感和动作的上下文信息,该模型在DailyDialog数据集上进行了实验,展示了在保持响应一致性和相关性的同时,增加情绪共鸣的能力。对比传统Seq2Seq模型,EmpTransfo在情感对话生成方面有所改进。
订阅专栏 解锁全文
2178

被折叠的 条评论
为什么被折叠?



