《3D游戏与计算机图形学中的数学方法》学习笔记 第二章

第二章 向量

该章主要讲述向量的基本概念和性质,并且给出了性质的证明。
证明笔记这里就不给出了,毕竟向量的基本性质都是印在脑子里的东西了,要看证明的话可以翻小、初、高课本…

2.1向量性质

定理2.1:

  • P + Q = Q + P
  • (P + Q) + R = P + (Q + R)
  • (ab)P = a(bP)
  • a(P + Q) = aP + aQ
  • (a + b)P = aP + bP

定理2.2:

  • ||P|| >= 0 (||P|| 为 向量的模 即 向量长度)
  • 当且仅当 P = (0, 0, …, 0), ||P|| = 0
  • ||aP|| = |a| ||P||
  • ||P + Q|| <= ||P|| + ||Q||

2.2 内积(点乘)

定理2.3:

  • P ⋅ Q = ∑ P i Q i P \cdot Q = \sum{P_iQ_i} PQ=PiQi

定理2.4:

  • P ⋅ Q P \cdot Q PQ = ||P|| ||Q|| cosα

内积的矩阵表示:
P ⋅ Q = P T ⋅ Q = [ P 1 , P 2 , . . . , P n ] [ Q 1 Q 2 . . . Q n ] P \cdot Q = P^T \cdot Q = [P_1, P_2, ... , P_n] \begin{bmatrix} Q_1 \\ Q_2 \\ ... \\ Q_n \end{bmatrix} PQ=PTQ=[P1,P2,...,Pn]Q1Q2...Qn

定理2.5:

  • P ⋅ Q = Q ⋅ P P \cdot Q = Q \cdot P PQ=QP
  • ( a P ) ⋅ Q = a ( P ⋅ Q ) (aP) \cdot Q = a(P \cdot Q) (aP)Q=a(PQ)
  • P ⋅ ( Q + R ) = P ⋅ Q + P ⋅ R P \cdot (Q + R) = P \cdot Q + P \cdot R P(Q+R)=PQ+PR
  • P ⋅ P = ∣ ∣ P ∣ ∣ 2 P \cdot P = ||P||^2 PP=P2
  • ∣ P ⋅ Q ∣ ≤ ∣ ∣ P ∣ ∣ ∣ ∣ Q ∣ ∣ |P \cdot Q| \leq ||P|| ||Q|| PQPQ

2.3 外积(叉乘)

定理2.6:

  • P × Q = ( P y Q z − P z Q y , P z Q x − P x Q z , P x Q y − P y Q x ) P \times Q = (P_yQ_z - P_zQ_y, P_zQ_x - P_xQ_z, P_xQ_y - P_yQ_x) P×Q=(PyQzPzQy,PzQxPxQz,PxQyPyQx)

定理2.7:

  • ( P × Q ) ⋅ P = ( P / t i m e s Q ) ⋅ Q = 0 (P \times Q) \cdot P = (P /times Q) \cdot Q = 0 (P×Q)P=(P/timesQ)Q=0

定理2.8:

  • ∣ ∣ P × Q ∣ ∣ = ∣ ∣ P ∣ ∣ ∣ ∣ Q ∣ ∣ s i n α ||P \times Q|| = ||P|| ||Q|| sinα P×Q=PQsinα

定理2.9:

  • Q × P = − ( P / t i m e s Q ) Q \times P = -(P /times Q) Q×P=(P/timesQ)
  • ( a P ) × Q = a ( P × Q ) (aP) \times Q = a(P \times Q) (aP)×Q=a(P×Q)
  • P × ( Q + R ) = P × Q + P × R P \times (Q + R) = P \times Q + P \times R P×(Q+R)=P×Q+P×R
  • P × P = 0 P \times P = 0 P×P=0(零向量)
  • ( P × Q ) ⋅ R = ( R × P ) ⋅ Q = ( Q × R ) ⋅ P (P \times Q) \cdot R = (R \times P) \cdot Q = (Q \times R) \cdot P (P×Q)R=(R×P)Q=(Q×R)P
  • P × ( Q × P ) = P × Q × P = P 2 Q − ( P × Q ) P P \times (Q \times P) = P \times Q \times P = P^2Q - (P \times Q)P P×(Q×P)=P×Q×P=P2Q(P×Q)P

向量空间

定义2.10:

  • 向量空间是一个集合 V,该集合的元素都是向量,定义了加法和标量乘法,则有以下性质成立:
    • 集合 V 对加法运算封闭,即 集合V 中任意的向量 P 和 Q,它们的和 P + Q P + Q P+Q 也是集合V的向量。
    • 集合V 对标量乘法运算封闭,即对于任意实数a 和 集合V中的任意向量P,它们的积 a P aP aP 也是集合V的向量。
    • 集合V中存在零向量,在集合V中的任意向量 P, P + 0 = 0 + P + P P + 0 = 0 + P + P P+0=0+P+P 成立
    • 对于集合V中的任意向量P,在集合V中存在向量Q,使 P + Q = 0 P + Q = 0 P+Q=0 成立
    • 集合V中的向量满足结合律,即对于集合V中的任意向量 P、Q 和 R, ( P + Q ) + R = P + ( Q + R ) (P + Q) + R = P + (Q + R) (P+Q)+R=P+(Q+R)成立
    • 标量乘法满足结合律,即对于任意实数 a 和 b,以及集合V中的任意向量P,(ab)P = a(bP) 成立
    • 标量与向量和的乘法满足分配律,即对于任意实数 a 和 b,以及集合V中任意向量 P 和 Q, a ( P + Q ) = a P + a Q a(P + Q) = aP + aQ a(P+Q)=aP+aQ成立
    • 标量与向量的乘法满足分配律,即对于任意实数 a 和 b,以及集合V中的任意向量P, ( a + b ) P = a P + b P (a + b)P = aP + bP (a+b)P=aP+bP 成立

定义2.11:

  • 对于含有 n个 向量的集合 { e 1 , e 2 , e 3 , . . . , e n } \{e_1, e_2, e_3, ... , e_n\} {e1,e2,e3,...,en},有该式 a 1 e 1 + a 2 e 2 + . . . + a n e n = 0 a_1e_1 + a_2e_2 + ... + a_ne_n = 0 a1e1+a2e2+...+anen=0,如果不存在不全为0的数 a 1 , a 2 , . . . , a n a_1, a_2, ... , a_n a1,a2,...,an 使该式成立,则向量集合线性无关。反之,则集合线性相关。

一个 n维向量空间 可由 n个线性无关向量的集合生成,生成向量空间的向量集合称为 向量空间的基:
定义2.12:

  • 向量空间 V V V 的基 B B B 是 n个线性无关向量的集合, B = { e 1 , e 2 , . . . , e n } B = \{e_1, e_2, ... , e_n\} B={e1,e2,...,en},对于向量空间 V V V中的任意向量 P P P,存在一组实数 a 1 , a 2 , . . . , a n a_1, a_2, ... , a_n a1,a2,...,an, 使得该式 P = a 1 e 1 + a 2 e 2 + . . . + a n e n P = a_1e_1 + a_2e_2 + ... + a_ne_n P=a1e1+a2e2+...+anen 成立。
    一个n维向量空间的每个基中有且仅有n个向量,如 三维坐标系的三个轴 x、y、z 对应的单位向量就是 3维向量空间的一个基

定义2.13:

  • 在向量空间的基 B B B 中,如果任意两个向量 e i e_i ei e j e_j ej, i ≠ j i \neq j i=j,且 e i ⋅ e j = 0 e_i \cdot e_j = 0 eiej=0,则基 B B B称为向量空间的正交基

定理2.14:

  • 给定任意两个向量 e 1 e_1 e1 e 2 e_2 e2,如果 e 1 ⋅ e 2 = 0 e_1 \cdot e_2 = 0 e1e2=0,则 e 1 e_1 e1 e 2 e_2 e2 两个向量线性无关

对于向量空间的正交基,如果其中每个向量的长度均为1,则称为规范正交基。为了方便表示,引入 克罗内克符号:
δ i j = { 1 如果 i = j 0 如果 i ≠ j δ_{ij} = \begin{cases} 1& \text{如果} i = j \\ 0& \text{如果} i \neq j \\ \end{cases} δij={10如果i=j如果i=j
定义2.15

  • 在向量空间的基 B = { e 1 , e 2 , . . . , e n } B = \{e_1, e_2, ... , e_n\} B={e1,e2,...,en} 中,如果任意两个向量 e i e_i ei e j e_j ej e i ⋅ e j = δ i j e_i \cdot e_j = δ_{ij} eiej=δij,则基 B B B称为向量空间的规范正交基
    ( 1 , 0 , 0 ) , ( 0 , 1 , 0 ) , ( 0 , 0 , 1 ) (1, 0, 0), (0, 1, 0), (0, 0, 1) (1,0,0),(0,1,0),(0,0,1) 就是三维向量空间的规范正交基

算法2.16:

  • Gram-Schmidt 正交化算法。给的 n 个线性无关向量组成的集合 B B B B = { e 1 , e 2 , . . . , e n } B=\{e_1, e_2, ..., e_n\} B={e1,e2,...,en},该算法可计算出向量集合 B ′ = { e 1 ′ , e 2 ′ , . . . , e n ′ } B' = \{e'_1, e'_2, ... , e'_n\} B={e1,e2,...,en},当 i ≠ j i \neq j i=j 时, e i ′ ⋅ e j ′ = 0 e'_i \cdot e'_j = 0 eiej=0 算法步骤如下:
    (a) 令 e 1 ′ = e 1 e'_1 = e_1 e1=e1
    (b) 之后考虑 i = 2 i = 2 i=2 以后的情况
    © 从向量 e i e_i ei 中减去 e i e_i ei 在 向量 e 1 ′ , e 2 ′ , . . . , e i − 1 ′ e'_1, e'_2, ... , e'_{i - 1} e1,e2,...,ei1 上的投影,结果保存到 e i ′ e'_i ei 中,即:
    e i ′ = e i − ∑ k = 1 i − 1 e i ⋅ e k ′ e k ′ 2 e k ′ e'_i = e_i - \sum^{i-1}_{k=1}{\frac{e_i \cdot e'_k}{{e'_k}^2}e'_k} ei=eik=1i1ek2eiekek
    (d) 如果 i < n i < n i<n,i++,转到步骤 ©
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值