
深度学习储备知识
文章平均质量分 77
Philo`
一个人至少拥有一个梦想,有一个理由去坚强。心若没有栖息的地方,到哪里都是在流浪。
展开
-
Windows 下安装mamba_ssm 记录,包括causal-conv1d和mamba-ssm
我也是装了两天左右才把windows的mamba-ssm装好,摸索了很多,下面是一些在安装过程中的问题和提示,下载链接:https://download.pytorch.org/whl/cu118。,把setuptools卸载干净就行,包括python自带的。这个报错总结起来就是。原创 2024-10-08 09:34:14 · 3438 阅读 · 3 评论 -
数据处理——根本表格信息重写图片名,检查图片名是否对应,二值图转换,输出二值图中目标个数等
1. 根据表格信息重命名图片名称2. 判断两个文件夹中名称是否相同3. 按照要求重命名图片名称4. 根据图片名称重命名图片5. 将图片转换成二值图并改变后缀名6. 统计二值图中目标的个数并输出符号条件的图片名称7. 将JSON数据写到表格中8. 重命名data下的各个数据集中的图片名原创 2024-08-13 22:17:28 · 745 阅读 · 0 评论 -
图像预处理——将img和mask根据自己的要求同时裁剪——matlab代码
超声的原始图像不仅包含了用于诊断的信息,还掺杂了诸如机器型号、日期等不相关的信息。为了确保后续神经网络分割的准确性和有效性,需要对这些无关信息进行裁剪,仅保留与分割任务直接相关的img和mask部分。这样既能优化数据处理流程,又能提升后续分析的精准度。原创 2024-03-05 10:45:03 · 697 阅读 · 0 评论 -
单目标分割标签图叠加代码
单目标分割标签图叠加代码原创 2023-10-10 21:37:54 · 354 阅读 · 0 评论 -
wandb快速上手、使用心得(超好用的Tensorboard高替品)
介绍wandb的功能,快速上手,初步探索原创 2023-06-20 13:32:55 · 38595 阅读 · 28 评论 -
中国计算机学会CCF推荐的国际会议(图像处理方向)
CCF根据论文的质量和影响力,对国际期刊和国际会议进行了评估和分类,以便研究者在选择发表论文或参与学术交流时有参考依据。CCF推荐的国际会议被分为A类B类和C类三个等级。A类会议代表高水平和较大影响力的会议,B类和C类会议的影响力也逐步提升。需要注意的是,CCF的评级是根据一定的评估标准和方法进行的,并且评级结果会不定期进行更新和调整。因此,本文针对2023年新发布的和医学图像处理方向的会议和期刊进行展示。中国计算机学会推荐国际学术会议和期刊目录正式发布。原创 2023-06-08 15:10:41 · 4321 阅读 · 0 评论 -
Torch中常见插值方式及各自的优缺点
插值指的是利用已知数据去预测未知数据,图像插值则是给定一个像素点,根据它周围像素点的信息来对该像素点的值进行预测。当我们调整图片尺寸或者对图片变形的时候常会用到图片插值。常见的插值算法可以**分为两类**:**自适应和非自适应**。 自适应的方法可以根据插值的内容来改变(尖锐的边缘或者是平滑的纹理),非自适应的方法对所有的像素点都进行同样的处理。 非自适应算法包括:最近邻,双线性,双三次,样条,sinc,lanczos等。原创 2023-03-01 21:11:46 · 5839 阅读 · 0 评论 -
医学图象分割常用损失函数(附Pytorch和Keras代码)
汇总了医学图象分割常见损失函数,包括Pytorch代码和Keras代码,部分代码也有运行结果图!原创 2023-02-16 21:22:01 · 4051 阅读 · 0 评论 -
影像组学——一个入门级汇报
首先,目前影像学的现状是对图像的解读主要依赖于专业人员的视觉评价,其结果多为描述性、主观性和非定量性,因此,客观、定量地评价医学图像具有迫切性。 其次,随着医疗影像设备软硬件的改善,医院数字化发展,影像储存及传输系统的方便、数学算法的改进以及计算机处理能力的提高,使得实现高通量的数字信息提取成为可能,为影像组学的诞生提供了现实基础和硬件支持。 最后,当前在大数据时化,医学研究与临床数据科学等新兴领域正在形成,多学科交叉的应用,使融合多种数据资源,实现个性化诊断和治疗,为医学影像组学提供了一种特殊的应原创 2022-12-16 10:52:21 · 1122 阅读 · 0 评论 -
深度学习中计算量和参数量介绍、实现代码、例子
理清FLOPS和FLOPs,大写S代表的是显卡的运算性能,小写s代表的是模型的运算次数!FLOPS是处理器性能的衡量指标,是“每秒所执行的浮点运算次数”的缩写;FLOPs是算法复杂度的衡量指标,是“浮点运算次数”的缩写,s代表的是复数;红框中的FLOPS是大写,和显卡运算能力有关!论文中,写的都是FLOPs,谁会没事在论文中写FLOPS!!影响网络参数量,和Batch没关,但是和输入数据的通道数和大小有关,大家可以自己试一下;影响网络计算量,和Batch。原创 2022-12-12 17:21:09 · 2466 阅读 · 0 评论 -
医学图像处理的SCI期刊和顶会
医学图像处理的SCI期刊和顶会 TMI MIA MIDL等等原创 2022-11-28 09:05:25 · 17572 阅读 · 7 评论 -
nn.Upsample() 参数详解及避坑
在Attention U-Net中有用到。原创 2022-11-18 09:59:44 · 6885 阅读 · 0 评论 -
Torch 池化操作大全 MaxPool2d MaxUnpool2d AvgPool2d FractionalMaxPool2d LPPool2d AdaptivePool2d dilation详解
从torch官网看,针对图片,有这7中池化操作,大概分为最大池化类,平均池化类,杂类最大池化实现有四种方式,MaxPool2d,可以设置k,s,p,但是不能设置输出大小,输出大小是计算好的;FractionalMaxPool2d,可以设置k,和输出大小,单数s和p不能设置;AdaptiveMaxPool2d,只能设置输出大小,其余的都设置不了;LPPool2d,这个纯属特列才可以使用,并且特例中的功能还是MaxPool2d的阉割版;除了LPPool2d,其余逐步自由化,增加了网络设置的随机性;原创 2022-11-13 16:30:45 · 5946 阅读 · 1 评论 -
Pytorch中Conv2d、ConvTranspose2d和MaxPool2d参数计算公式
更新了空洞卷积属性的计算公式,也给出了非空洞卷积的计算公式,具体可以从官网学习!原创 2022-09-30 16:39:44 · 3470 阅读 · 0 评论 -
Matplotlib 基本知识点
重点是熟悉其常见的使用关键字,用到了再来找相关函数,针对大数据进行画图和分析时,用代码跑可能有点难,准备学一下Orange这个软件。在绘制图形时,使用标记,样式,颜色进行线条的修饰。原创 2022-09-14 21:33:12 · 937 阅读 · 0 评论 -
Numpy学习记录
numpy.ones。原创 2022-09-13 10:12:06 · 188 阅读 · 0 评论 -
Pandas学习记录
菜鸟教程pandas教学mean 平均值 指定列填充median 中位数 指定列填充mode 众数 指定列填充原创 2022-09-07 21:51:40 · 642 阅读 · 0 评论