
会议论文研读
文章平均质量分 90
Philo`
一个人至少拥有一个梦想,有一个理由去坚强。心若没有栖息的地方,到哪里都是在流浪。
展开
-
SegNetr: 重新思考 U 形网络中的局部-全局交互和跳过连接
近年来,U 形网络因其简单且易于调整的结构而在医学图像分割领域占据主导地位。然而,现有的U型分割网络:1)大多侧重于设计复杂的自注意力模块来弥补基于卷积运算的长期依赖性的不足,这增加了网络的总体参数数量和计算复杂度;2)简单地融合编码器和解码器的特征,忽略它们空间位置之间的联系。在本文中,我们重新思考上述问题并构建了一个轻量级的医学图像分割网络,称为SegNetr。具体来说,我们引入了一种新颖的 SegNetr 模块,它可以在任何阶段动态地执行局部-全局交互,并且仅具有线性复杂度。原创 2023-09-08 15:51:11 · 1204 阅读 · 3 评论 -
UNext:基于 MLP 的快速医学图像分割网络
有代码,可深入学习轻量级分割模型的论文切入点UNet 及其最新扩展(如 TransUNet)近年来一直是领先的医学图像分割方法。然而,这些网络无法有效地用于应用中的快速图像分割,因为它们参数繁重、计算复杂且使用缓慢。为此,我们提出了 UNeXt,它是一种基于卷积多层感知器(MLP)的图像分割网络。我们以有效的方式设计了 UNeXt,其中包括早期卷积阶段和潜在阶段的 MLP 阶段。我们提出了一个标记化的 MLP 块,我们可以在其中有效地标记和投影卷积特征,并使用 MLP 来对表示进行建模。原创 2023-09-07 19:30:00 · 3638 阅读 · 2 评论