
经典网络复现
文章平均质量分 93
Philo`
一个人至少拥有一个梦想,有一个理由去坚强。心若没有栖息的地方,到哪里都是在流浪。
展开
-
InceptionV4 Inception-ResNet 论文研读及Pytorch代码复现
文章详细介绍了Inception v4及Inception ResNet网络结构,并给出了Pytorch代码原创 2023-02-08 19:05:01 · 2955 阅读 · 4 评论 -
Self-Attention 、 Multi-Head Attention 、VIT 学习记录及源码分享
建议跟着讲解视频自己敲一遍,加深理解!想要看懂VIT中的一些内容,需要的基础知识点就是自己跑过一些CV方向的Demo,知道常见CV领域的一些操作,剩下的就是跟着霹导的视频学习就好了,讲解的非常详细,代码说的也很好!Hybrid VIT 唯一不同就是红色框中的东西,反正Embedding层使用ResNet提取特征之后,维度,大小啥的,用Conv2d调整一下就行了!这里的Head就是避免单一的Head学习到的的东西有点少,就多用几个Head,然后将学习到的东西综合一下,这样学习能力上去了,容错性也大了!原创 2022-12-09 15:31:33 · 1554 阅读 · 0 评论 -
U2Net——U-Net套U-Net——套娃式图像分割算法
这里Block,除了输入和输出的通道会发生变化,在中间层进行卷积时,使用的通道数都是Mid_channels,同时在最下层的卷积中,使用的是膨胀卷积。这里的L=7,指的是RSU-7,是En_1和Dn_1的内部结构,在前四层中,都是使用的是RSU结构;保留了原始的U-Net网络结构,只是将每一个Block的内部结构做了很大的调整,换成了一个U-Net,同时针对整个结构的输出做出调整,在训练时,给六个输出进行loss计算,在测试时只得到一个输出。原创 2022-11-28 13:11:47 · 2781 阅读 · 1 评论 -
DenseNet重点介绍和源码分享
因此DenseNet基于这一特性,不在盲目的增加网络层数,而是参考ResNet出现的问题,ResNet将每一个模块的输出和原始输入数据相加作为最后的输出,而DenseNet是将每一个模块中,每一个卷积层的输入都是来自其之前所有卷积层的输出,而其输出也是都传递给它之后的每一个卷积层作为输入。同时,这里将多个结果作为输入并不是进行简单的相加,而是在通道上进行链接,这也缩短了每一层的参数和Loss函数的距离,增加了模型的训练速度,减少了梯度问题,这也是该模型的一大优势。一轮10分钟,出道即巅峰!原创 2022-10-28 14:07:44 · 1899 阅读 · 0 评论 -
ResNet文章重点、源码手搓、源码正确使用方式——完整训练和测试过程
这个和我们的认知相违背,在一般的网络中,随着层数的增加,下层网络学的的是上层传递下来的东西,设置为H(x),假设原始输入的为X,由于层数增加,下层只是拟合H(x),效果如上图所示,层数增加,效果变差,因此HeKaiMing团队提出,下层直接拟合H(x)效果不好,那H(x)上面的层数,拟合H(x)-x的效果如何呢?主要是想看看具体的残差如何实现的,但是网上的少之又少,所以凑合写了一个,仅供参考,主要是娱乐自己。ResNet是真正打开了深层模型的大门。,主要是使用的是Kaggle平台。原创 2022-10-26 15:20:10 · 2797 阅读 · 2 评论 -
GoogleNet重点介绍和源码
可以把他看做inception网络中的一个小细节,它确保了即便是隐藏单元和中间层也参与了特征计算,他们也能预测图片的类别,他在inception网络中起到一种调整的效果,并且能防止网络发生过拟合。就是结构图中的右边部分,在训练模型时,将两个辅助分类器的损失乘以权重(论文中是0.3)加到网络的整体损失上,再进行反向传播。从左往右1,2,3,4通道最后需要输出的通道数是64,512,256,128, 同时1*1的卷积输出通道为64。这里和V1比较,就是2,3,4通道都添加了1*1的卷积层,这是为了减少参数。原创 2022-10-24 14:45:15 · 1591 阅读 · 0 评论 -
AlexNet重点介绍和源码测试
修改方法:将源码中出现的ReLU和Dropout参数中的True改为False。的冠军,开启了深度学习模型在图像分类中的应用历程,由。第一步:在Kaggle平台上搜索。,找到并new Notebook。第三步:复制以下代码,跑起来吧!三人提出,因此网络名称为。原创 2022-10-18 09:44:55 · 1345 阅读 · 0 评论