
医学图像分割
文章平均质量分 77
Philo`
一个人至少拥有一个梦想,有一个理由去坚强。心若没有栖息的地方,到哪里都是在流浪。
展开
-
2025年博士自荐——给个机会我定肝脑涂地(狗头)
首先感谢各位在百忙之中抽空阅读我的申博自荐信!我是徐州医科大学生物医学工程25届硕士研究生ZQ,申请攻读贵组2025级博士研究生。我的主要研究为基于深度学习的医学图像处理,包括纵膈淋巴结、乳腺病灶超声图像分割、超声图像-SAM大模型应用等。以第一作者发表中科院三区SCI文章一篇、北大核心一篇、EI一篇。具体成果包括:以第一作者在《中国图象图形学报》(北核)和《Frontiers in Neuroscience》(Q2,IF:3.2)分别发表论文1篇,参与发明专利授权3项(2项三作1项二作)。另有两篇SCI原创 2024-10-21 10:09:20 · 650 阅读 · 5 评论 -
图像预处理——将img和mask根据自己的要求同时裁剪——matlab代码
超声的原始图像不仅包含了用于诊断的信息,还掺杂了诸如机器型号、日期等不相关的信息。为了确保后续神经网络分割的准确性和有效性,需要对这些无关信息进行裁剪,仅保留与分割任务直接相关的img和mask部分。这样既能优化数据处理流程,又能提升后续分析的精准度。原创 2024-03-05 10:45:03 · 697 阅读 · 0 评论 -
医学图象分割常用损失函数(附Pytorch和Keras代码)
汇总了医学图象分割常见损失函数,包括Pytorch代码和Keras代码,部分代码也有运行结果图!原创 2023-02-16 21:22:01 · 4051 阅读 · 0 评论 -
最新出炉的U-Net研究性综述:Medical Image Segmentation Review: The Success of U-Net
论文地址:https://arxiv.org/abs/2211.14830代码地址:https://github.com/NITR098/Awesome-U-Net文章第一部分是介绍了医学图像分割的重要性,第二部分是分别介绍了2D-UNet和3D-UNet的发展史和意义;文章重点在第三部分和第四部分,第三部介绍了U-Net的六个部分的改进,第四部分是介绍了主要模型的全部实施过程,第五部分,介绍了医学图像分割的未来发展方向和困难点。文章主要从六个部分介绍了截至2022年9月,高引用文章的模型改进方法,分为:原创 2022-12-06 21:34:17 · 6594 阅读 · 6 评论 -
U-Net 模型改进和应用场景研究性综述
参考之前的一篇文章:U-Net代码练习结构性改进就三种情况,编码器解码器改进,跳连接改进,以及模型整体结构改进;大 部 分 改 进 工 作是在原有模块的基础上,增加残差模块、Dense 模 块 、Inception 模 块 、Attention 模 块 等 经 典 网 络 模 块 , 或 综 合 运 用 其 中 的 几 种 模 块 ,以 提 高 网 络 的 分 割 性 能。2018年的一篇MDU-Net: Multi-scale Densely Connected U-Net for biomedical原创 2022-12-05 17:29:57 · 13131 阅读 · 0 评论 -
U2Net——U-Net套U-Net——套娃式图像分割算法
这里Block,除了输入和输出的通道会发生变化,在中间层进行卷积时,使用的通道数都是Mid_channels,同时在最下层的卷积中,使用的是膨胀卷积。这里的L=7,指的是RSU-7,是En_1和Dn_1的内部结构,在前四层中,都是使用的是RSU结构;保留了原始的U-Net网络结构,只是将每一个Block的内部结构做了很大的调整,换成了一个U-Net,同时针对整个结构的输出做出调整,在训练时,给六个输出进行loss计算,在测试时只得到一个输出。原创 2022-11-28 13:11:47 · 2781 阅读 · 1 评论 -
医学图像分割常见评价指标(单目标)——包含源码讲解和指标缺陷
2023年6月1号新增Accuracy指标,强调了其和Precisio指标的区别就是预测的区域中真正是目标区域的面积占据总目标区域的比例,1最好,0最拉;原创 2022-11-05 22:38:42 · 15742 阅读 · 26 评论