
中科院二区文章解读
文章平均质量分 95
Philo`
一个人至少拥有一个梦想,有一个理由去坚强。心若没有栖息的地方,到哪里都是在流浪。
展开
-
C-Net:用于乳腺超声图像分割的具有全局指导和细化残差的级联卷积神经网络
乳腺病灶分割是计算机辅助诊断系统的重要一步。然而,散斑噪声、异质结构和相似的强度分布给乳腺病灶分割带来了挑战。在本文中,我们提出了一种集成 U-net、双向注意引导网络(BAGNet)和细化残差网络(RFNet)的新型级联卷积神经网络,用于乳腺超声图像中的病变分割。具体来说,我们首先使用 U-net 生成一组包含低级和高级图像结构的显着图。然后,使用双向注意力引导网络从显着性图中捕获全局(低级)和局部(高级)特征之间的上下文。全局特征图的引入可以减少周围组织对病变区域的干扰。原创 2023-10-17 17:13:45 · 2445 阅读 · 2 评论 -
GG-Net: 超声图像中乳腺病变分割的全局指导网络
超声波自动乳腺病灶分割有助于诊断乳腺癌,这是影响全球女性的可怕疾病之一。由于固有的散斑伪影、模糊的乳腺病变边界以及乳腺病变区域内的不均匀强度分布,从超声图像中准确分割乳腺区域是一项具有挑战性的任务。最近,卷积神经网络(CNN)在医学图像分割任务中表现出了显着的效果。然而,CNN 中的卷积运算通常集中于局部区域,其捕获输入超声图像的远程依赖性的能力有限,导致乳腺病变分割精度下降。在本文中,我们开发了一种配备全局引导块(GGB)和乳腺病灶边界检测(BD)模块的深度卷积神经网络,用于增强乳腺超声病灶分割。原创 2023-10-09 21:15:26 · 13465 阅读 · 7 评论 -
CSwin-PNet: CNN-Swin-Vit 组合金字塔网络用于超声图像中乳腺病变分割
目前,基于乳腺超声(BUS)图像的乳腺肿瘤自动分割仍然是一项具有挑战性的任务。**大多数病变分割方法是基于卷积神经网络(CNN)实现的,其在建立长程依赖关系和获取全局上下文信息方面存在局限性。**最近,基于Transformer的模型由于其强大的自注意力机制而被广泛应用于计算机视觉任务中来构建远程上下文信息,并且其效果比传统的CNN更好。在本文中,CNN 和 Swin Transformer 连接作为特征提取主干,构建用于特征编码和解码的金字塔结构网络。首先,我们设计了一个交互式通道注意(ICA)模块。原创 2023-09-11 17:16:08 · 2075 阅读 · 6 评论 -
ATTransUNet:一种增强型混合Transformer结构用于超声图像分割
主要介绍该期刊的基本情况,阅读学习一下该篇文章医学图像的准确自动分割是临床诊断和分析的关键步骤。本文提出了一种增强型Transformer混合分割网络(ATTransUNet)来探索医学图像中高效的token挖掘方法,并结合自注意力机制进行医学图像分割,以达到性能和效率之间的平衡。此外,为了进一步提高分割精度并融合CNN和Transformer各自的优点,本文设计了选择性特征强化模块(SFRM)。本文提出的模型能够准确定位待分割的结构,显着提高了多个数据集上医学图像分割的准确性。原创 2023-09-07 09:29:09 · 679 阅读 · 0 评论