一、算法:
P:车的位置;
U:速度;
圈:p和u组合的可能分布;
中间的点:mean—期望—中间点的概率密度比较大,外面一圈的比较小
车的状态表达成矩阵的形式,pk为协方差矩阵;
1、
式1:下一状态的位置=上一状态位置+u*t
式2:匀速状态
2、加速度运动的公式
3、应卡尔曼滤波算法,需将匀速和加速度情况下的式子转换成矩阵,如下:
式1:此过程为参数估计的过程;其中,Fk为状态转移矩阵;
式2:Bk为控制矩阵
一、算法:
P:车的位置;
U:速度;
圈:p和u组合的可能分布;
中间的点:mean—期望—中间点的概率密度比较大,外面一圈的比较小
车的状态表达成矩阵的形式,pk为协方差矩阵;
1、
式1:下一状态的位置=上一状态位置+u*t
式2:匀速状态
2、加速度运动的公式
3、应卡尔曼滤波算法,需将匀速和加速度情况下的式子转换成矩阵,如下:
式1:此过程为参数估计的过程;其中,Fk为状态转移矩阵;
式2:Bk为控制矩阵