卡尔曼滤波 Kalman Filter(笔记)

这篇博客详细介绍了卡尔曼滤波的工作原理,从算法的数学基础到实际的实现步骤。通过矩阵形式展示了状态转移和预测过程,解释了如何结合传感器数据进行最优估计,并给出了程序实现的概要。卡尔曼滤波旨在融合力学模型和传感器数据,提供系统状态的最优估计。
摘要由CSDN通过智能技术生成

一、算法:
在这里插入图片描述
P:车的位置;
U:速度;
圈:p和u组合的可能分布;
中间的点:mean—期望—中间点的概率密度比较大,外面一圈的比较小
在这里插入图片描述
车的状态表达成矩阵的形式,pk为协方差矩阵;

1、
式1:下一状态的位置=上一状态位置+u*t
式2:匀速状态
在这里插入图片描述
2、加速度运动的公式
在这里插入图片描述
3、应卡尔曼滤波算法,需将匀速和加速度情况下的式子转换成矩阵,如下:
在这里插入图片描述
式1:此过程为参数估计的过程;其中,Fk为状态转移矩阵;
式2:Bk为控制矩阵࿱

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值