Inception网络、ResNet、Depthwise的学习

本文解析了Inception网络如何在保持性能的同时减少参数量,比较了它与ResNet的解决方案,并介绍了DepthwiseSeparableConvolution。深入探讨了这些技术在深度学习中的作用和优势。
摘要由CSDN通过智能技术生成

理解深度学习中的Inception网络
https://blog.csdn.net/ybdesire/article/details/80628586
提升网络性能最保险的方法就是增加网络的宽度和深度,但是越深越宽的网络参数量也就越大,Inception网络解决课这个问题。

ResNet到底在解决一个什么问题呢?
https://mp.weixin.qq.com/s/cVoWZs_R0Si1G9AOHx4Ztw

Depthwise Separable Convolution
https://mp.weixin.qq.com/s/qkldaRnuN-R0B64ssUs47w
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值