线性代数系列讲解第十篇 特征值和特征向量

特征向量和特征值(eigenvector,eigenvalue)

特征向量就是能使得
A X = λ X AX=\lambda X AX=λX
其中 λ \lambda λ是个数,而这个 λ \lambda λ就是特征值。 X X X是个非零向量。
其实特征向量 X X X就是经过 A X AX AX还是能使得与它本身平行。
我是这么想的,特征向量就代表着矩阵的正交基,矩阵对正交基的操作其实还是落在正交基上,因为其他的正交基与本正交基正交而得0,因此,矩阵最终使得正交基伸缩。

如果矩阵 A A A是个奇异矩阵,按照我们之前的知识,我们必然可以找到非零向量使得
A X = 0 AX=0 AX=0
则必然我们可以找到
λ = 0 \lambda = 0 λ=0

如果矩阵 A A A是个投影矩阵,我们将其写成 P P P,则有如下两种情况:
如果 X X X在该投影平面内,则 P X = X PX=X PX=X,此时 λ = 1 \lambda = 1 λ=1
如果 X X X垂直投影平面内,则 P X = 0 PX=0 PX=0,此时 λ = 0 \lambda =0 λ=0

求解特征值和特征向量

从定义出发:
A X = λ X AX=\lambda X AX=λX
我们将其写成
( A − λ I ) X = 0 (A-\lambda I)X=0 (AλI)X=0
我们求解 X X X是不为零的向量,因此 A − λ I A-\lambda I AλI是奇异矩阵才有非零解。
我们将问题改写如下,来求解 λ \lambda λ
d e t ( A − λ I ) = 0 det(A-\lambda I)=0 det(AλI)=0
举个例子:
A = [ 3 1 1 3 ]    d e t ( A − λ I ) = ∣ 3 − λ 1 1 3 − λ ∣ = ( 3 − λ ) 2 − 1         = λ 2 − 6 λ + 8 = ( λ − 4 ) ( λ − 2 ) = 0 A=\begin{bmatrix}3&1\\1&3\end{bmatrix}\\\;\\det(A-\lambda I)=\begin{vmatrix}3-\lambda &1\\1&3-\lambda\end{vmatrix}=(3-\lambda)^2-1\\\;\\\qquad\qquad\qquad\;\;=\lambda^2-6\lambda+8=(\lambda-4)(\lambda-2)=0 A=[3113]det(AλI)=3λ113λ=(3λ)21=λ26λ+8=(λ4)(λ2)=0
我们可以得到 λ 1 = 4 \lambda_1=4 λ1=4 λ 2 = 2 \lambda_2=2 λ2=2。还可以发现 6 6 6是矩阵 A A A的迹,而 8 8 8是矩阵 A A A的行列式。

矩阵的迹(trace):矩阵的对角线元素之和,而且它也等于特征值之和。比如上面矩阵 A A A的迹 = 3 + 3 = 6 =3+3=6 =3+3=6

好了,接下来我们求解特征向量。
A − 4 I = [ − 1 1 1 − 1 ]    ( A − 4 I ) X = 0 A-4I=\begin{bmatrix}-1&1\\1&-1\end{bmatrix}\\\;\\(A-4I)X=0 A4I=[1111](A4I)X=0
则其实就是求解零空间,解的
x 1 = [ 1 1 ] x_1=\begin{bmatrix}1\\1\end{bmatrix} x1=[11]
同理求解 ( A − 2 I ) X = 0 (A-2I)X=0 (A2I)X=0,得 x 2 = [ − 1 1 ] x_2=\begin{bmatrix}-1\\1\end{bmatrix} x2=[11]
当我们给矩阵 A A A加上 3 I 3I 3I,我们会发现特征值加3,但是特征向量不变。

我们来看看矩阵的特征值不一定是实数,如下 9 0 ∘ 90^{\circ} 90的旋转矩阵,还是正交。
Q = [ c o s 9 0 ∘ − s i n 9 0 ∘ s i n 9 0 ∘ c o s 9 0 ∘ ] = [ 0 − 1 1 0 ] Q=\begin{bmatrix}cos90^{\circ}&-sin90^{\circ}\\sin90^{\circ}&cos90^{\circ}\end{bmatrix}=\begin{bmatrix}0&-1\\1&0\end{bmatrix} Q=[cos90sin90sin90cos90]=[0110]
通过计算我们得到两个特征值是 i i i − i -i i,其实特征值表现出了虚数,其实表示就是旋转 9 0 ∘ 90^{\circ} 90的意思。
我们可以得出结论当矩阵越接近对称或对称,特征值为实数,否则为虚数。
以上讨论的是特征值都没有重复的,下列讨论特征值有重复的,我们一般叫做重根。
A = [ 3 1 0 3 ]    d e t ( A − λ I ) = ∣ 3 − λ 1 0 3 − λ ∣ = ( 3 − λ ) 2 → λ 1 = λ 2 = 3    ( A − λ ) X = [ 0 1 0 0 ] [ X ] = [ 0 ] A=\begin{bmatrix}3&1\\0&3\end{bmatrix}\\\;\\det(A-\lambda I)=\begin{vmatrix}3-\lambda&1\\0&3-\lambda\end{vmatrix}=(3-\lambda)^2\rightarrow\lambda_1=\lambda_2=3\\\;\\(A-\lambda)X=\begin{bmatrix}0&1\\0&0\end{bmatrix}[X]=[0]

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值