第二十一讲 特征值和特征向量

本文介绍了线性代数中特征值和特征向量的概念,包括特征值的性质、求解方法,以及矩阵平移、90°旋转矩阵、对称与反对称矩阵以及退化矩阵的特征值特点。通过对麻省理工线性代数课程的笔记,阐述了特征向量线性无关的重要性,并探讨了特征向量与特征值的关系。
摘要由CSDN通过智能技术生成

我个人认为麻省理工线性代数这门课,到二十一讲才真正进入有用的部分,因此从这一讲开始做笔记。

一,概念

满足条件:Ax=λx

解释:当向量x经过矩阵A变换后,效果等于向量x乘上任意常数λ

则:x是矩阵A的特征向量,λ是矩阵A的特征值

二,性质

性质1:如果A是奇异矩阵,且Ax=0,则x是0空间的非0向量,λ=0

注:奇异=不可逆=线性相关,非奇异=可逆=线性无关

性质2:λ的和=A的迹trace

解释:A的迹trace表示,矩阵A对角元素的和

性质3:λ的积=det(A)

解释:det(A)表示,A的行列式的值

三,求λ和x

把Ax=λx化为(A-λI)x=0,发现必须满足:det(A-λI)=0

因为如果det(A-λI)≠0,则x只有0解( x ≡ 0 x \equiv 0 x0),不存在特征向量

第一步:求出λ,通过det(A-λI)=0

二阶矩阵的特征值是如下方程的解:
λ 2 − t r a c e ( A ) λ + d e t A = 0 \lambda ^{2}-trace(A)\lambda +detA =0 λ2trace(A)λ+detA=0

第二步:求出x,通过(A-λI)x=0

注:用高斯若尔当消元法
特征向量之间必须线性无关,但不一定互相垂直

四,矩阵平移

(A+αI)x=Ax+αx=λx+αx=(λ+α)x,α∈R

解释:α表示,矩阵A对角元素的平移量

如果Ax=λx,By=αy,则(A+B)x≠(λ+α)x,因为x≠y

解释:特征向量不同,则特征值不能相加

五,90°旋转矩阵的特征值是复数

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值